Parturition and Early Growth of Crowned Seahorse, Hippocampus coronatus in Korea

한국산 해마, Hippocampus coronatus의 출산과 초기성장

  • Choi Young-Ung (Faculty of Applied Marine Science Cheju National University) ;
  • Rho Sum (Faculty of Applied Marine Science Cheju National University) ;
  • Jung Min-Min (Jeju Fisheries Research Institute, NFRDI) ;
  • Lee Young-Don (Marine & Environmental Research Institute, Cheju National University) ;
  • Noh Gyoung-Ane (Corea, Center, Ornamental Reef fish & Aquariums)
  • 최영웅 (제주대학교 해양생산과학부) ;
  • 노섬 (제주대학교 해양생산과학부) ;
  • 정민민 (국립수산과학원) ;
  • 이영돈 (제주대학교 해양과환경연구소) ;
  • 노경언 (한국해수관상어종묘센터)
  • Published : 2006.05.01

Abstract

The recent decrease in wild stocks of seahorse, Hippocampus coronatus, has prompted the production of the species in captivity. We here present data on the body color changes of the species according to culture conditions. This investigation examined relationship between adult body size and clutch and growth in 60 days after parturition and survival of juveniles with four fed enriched Artemia nauplii, copepod nauplii and copepod adult. Seahorse adults ($77.77{\pm}9.84mm$, n=12) collected from Kamak Bay and Yeoja Bay from August 2003 to November 2004 gave a parturition of $6\sim75$ juveniles (Mean, 39 juveniles/male/time) for 14 times. A day old seahorses were $14.48{\pm}1.38mm$ (n=15) in standard length (SL) with 14 dorsal fin rays, 12 pectoral fin rays and 4 anal fin rays. Sixty-day old seahorses were $24.65{\pm}0.83mm$ (n=4) in SL. Growth rate of seahorses was 0.18 mm/day at 24 in 60 days after parturition. When offered Artemia nauplii and copepod nauplii, 5 day old sea-horses preferred copepod nauplii to Aremia nauplii with a maximum predation rate of 31 copepod nauplii/sea-horse/h. However 30-day old seahorses preferred selected Artemia nauplii with a maximum predation rate of 14 Artemia nauplii/seahorse/h. Survival was highest (49%) when offered copepod nauplii together with enriched Artemia nauplii.

체색의 변화가 다양하여 관상용으로 가치가 높은 Hippocampus coronatus의 안정적인 번식기술을 개발하기 위하여 가막만과 여자만 부근해역의 잘피밭에서 채집 한 후 실험실에서 사육하면서 어미의 출산특성, 자치어의 성장 및 초기자어사육에 알맞은 먹이조건을 조사하었다. $7{\sim}11$월에 가막만과 여자만에서 출현한 체장(SL) $53.91{\sim}87.31 mm$ (평균 $77.76{\pm}9.84 mm$, n=12) 범위의 개체들이 실험실내에서 $6{\sim}75$ 개체(평균 39 ind./male/time)를 출산하였다. 출산 직후 자어의 크기는 $11.69{\sim}15.81 mm$(평균 $13.7{\pm}1.3 mm$, n=15)였고 몸통과 꼬리의 체륜수는 10 그리고 39개였으며 가슴지느러미, 등지느러미 그리고 뒷지느러미 줄기수는 각각 12, 14 그리고 4개였다. 출산 후 60일에는 $23.48{\sim}25.29 mm$ (평균, $24.65{\pm}0.83 mm$, n=4)로 성장하였고 일간성장률은 0.18 mm/day였다. Copepod와 Artemia를 혼합 공급하여 포식량을 조사한 결과 출산 후 5일째에 copepod nauplii의 포식량은 평균 21 ind./larva/hour였고 Artemia napulii의 포식량은 평균 3 ind./larva/hour로 copepod nauplii에 대한 선호도가 높았고 출산 후 30일째에는 copepod nauplii에 대한 포식량이 평균 5 ind./larva/hour, 그리고 Artemia napulii의 포식량이 평균 9 ind./larva/hour로 성장함에 따라 Artemia napulii에 대한 포식량이 증가하였다. 생존율을 고려한 먹이 공급방법에 있어서 Artemia nauplii와 copepod nauplii를 혼합 공급할 경우 생존율은 출산 후 50일에 48.9%로 향상된 결과를 얻을 수 있었다.

Keywords

References

  1. Baum, J. K., J. J. Meeuwing, and A. C. J. Vincent, 2003. Bycatch of seahorse (Hippocampus erectus) in a Gulf of Mexico shrimp trawl fishery. Fish. Bull., 101, 721-731
  2. Boisseau, J., 1967. Recherche sur le controle hormonal de l'incubation chez l'Hippocampe. Revue Europeenne d'Endocrinologie, 4, 197-234
  3. Bye, V. J., 1984. The role of environmental factors in the timing of reproductive cycles. (in) Potts, G. W. and R. J. Wootoon (ed.), Fish Reproduction, Strategies and Tactics, Academic Press, London. U.K. pp. 187-205
  4. Cai, N., Q. Xu, F. Yu, X. Wu, and G. Sun, 1984. Studies on the reproduction of the seahorse Hippocampus trimaculatus. Studia Marina Sinica, 23, 83-93
  5. CITES, 2002. Twelfth Meeting of the Conference of the Parties. Comments from the Parties and Comments and Recommendations from the Secretariat on the Proposals to Amend Appendices I and II, http:www.cites.org
  6. Cole, K. S. and Y. Sadovy, 1995. Evaluating the use of spawning success to estimate reproductive success in a Caribbean reef fish. Journal of Fish Biology, 47, 181-191 https://doi.org/10.1111/j.1095-8649.1995.tb01887.x
  7. Duncan, D. B., 1955. Multiple range and multiple F tests. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  8. Foster, S. J. and A. C. J. Vincent, 2004. The life history and ecology of seahorses: implications for conservation and management. Journal of Fish biology, 65, 1-61 https://doi.org/10.1111/j.0022-1112.2004.00429.x
  9. Fritzche, R. A., 1980. Revision of the eastern Pacific Syngnathidae (Pisces: Syngnathiformes) including both recent and fossil forms. Proceedings of the California Academy of Science, 42, 181-227
  10. Froses, R. and D. Pauly, 2003. Fishbase. www.fishbase.org
  11. Haresign, T. H. and S. E. Shumway, 1981. Permeability of the marsupium of the pipefish Syngnathus fuscus to [14C]-alpha amino isobutyric acid. Comp. Biochem. Physiol., 69A, 603-604
  12. Herald, E. S., 1949. Pipefishes and seahorses as food for tuna. California Fish and Game, California, 35, 329 pp
  13. IUCN, 2003. 2003 IUCN Red List of Threatened Species. IUCN, Grand, Switerland. http://www.redlist.org
  14. Job, S. D., H. H. Do, J. J. Meeuwig, and H. J. Hall, 2002. Culturing the oceanic seahorse, Hippocampus kuda. Aquaculture, 214, 333-341
  15. Kim, I. S. and W. O. Lee, 1995. First record of the seahorse fish, Hippocampus trimaculatus (Pisces: Syngnathidae) from Korea. Kor. J. Zool., 38, 74-77
  16. Liang, B., 1992. Research on the culture of Hippocampus. J. Ocean Univ, Qingdao (Qingdao Haiyang Daoxue Xuebao), 22, 39-44
  17. Linton, J. R. and B. L. Soloff, 1964. The physiology of the brood pouch of the male seahorse Hippocampus erectus. Bulletin of Marine Science of Gulf and Caribbean, 14, 45-61
  18. Lourie, J. R., A. C. J. Vincent, and H. J. Hall, 1999a. Seahorses: An Identification Guide to ther Worlds's Species and Their Conservation. Project Seahorse, London, 214 pp
  19. Lourie, S. A., J. C. Pritchard, S. P. Casey, T. S. Ky, H. J. Hall, and A. C. J. Vincent, 1999b. The taxonomy of Vietnam's exploited seahorses (family Syngnathidae). Biol. J. Linn. Soc., 66, 231-256 https://doi.org/10.1111/j.1095-8312.1999.tb01886.x
  20. Lourie, S., 2003. Measuring seahorses. Project Seahorse Technical Report No.4, Version 1.0 Project Seahorse. Fisheries Centre, University of British Columbia, 15 pp
  21. Masonjones, H. D. and S. M. Lewis, 1996. Courtship behavior in the dwarf seahorse, Hippocampus zosterae. Copeia, 1996, 634-640 https://doi.org/10.2307/1447527
  22. Masonjones, H. D., 1997. Relative parental investment of male and female dwarf seahorses, Hippocampus zosterae. American Zoologist, 37, 114 pp
  23. Mi, P. T., E. S. Kornienko, and A. L. Drozdov, 1998. Embryonic and larval development of the seahorse Hippocampus kuda, Russican Journal of Marine Biology, 24, 325-329
  24. Payne, M. F., R. J. Rippingale, and R. B. longmore, 1998. Growth and survival of juvenile pipefish (Stigmatopora argus) fed live copepod with high and low HUFA content. Aqauculture, 167, 237-245 https://doi.org/10.1016/S0044-8486(98)00318-4
  25. Payne, M. F. and R. J. Rippingale, 2000. Hippocampus subelongatus, juveniles on copepod nauplii and enriched Artemia. Aquaculture, 188, 352-361
  26. Perante, N. C., M. G. Pajaro, J. J. Meeuwig, and A. C. J. Vincent, 2002. Biology of a seahorse species Hippocampus comes in the central Philippines. Journal of Fish Biology, 60, 821-837 https://doi.org/10.1111/j.1095-8649.2002.tb02412.x
  27. Scarratt, A. M., 1995. Techniques for raising lined seahorses (Hippocampus erectus). Aquarium Front, 3, 24-29
  28. Sargent, J. R., L. A. McEvoy, and J. G. Bell, 1997. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155, 117-128 https://doi.org/10.1016/S0044-8486(97)00122-1
  29. Strawn, K., 1958. Life history of the pigmy seahorse, Hippocampus zosterae Jordan and Gilbert, at Cedar Key, Florida. Copeia, 1958, 16-22 https://doi.org/10.2307/1439534
  30. Tipton, K. and S. S. Bell, 1988. Foraging patterns of two syngnathid fishes: importance of harpacticoid copepods. Marine Ecology Progress Series, 47, 31-43 https://doi.org/10.3354/meps047031
  31. Troung, S. K. and T. N. M. Nga, 1995. Reproduction of two species seahorses Hippocampus histrix and H. trimaculatus in Binhthuan waters. Bao cao Khoa Hoc, 27, 68 pp
  32. Vincent, A. C. J., 1990. Reproductive Ecology of Seahorses. Ph. D. thesis, cambridge University, U.K., 107 pp
  33. Vincent, A. C. J., 1996. The International trade in Seahorses. TRAFFIC International, Cambridge, pp. 4-163
  34. Vincent, A. C. J. and B. G. Giles, 2003. Correlates of reproductive success in a wild population of Hippocampus whitei. Journal of Fish Biology, 63, 344-355 https://doi.org/10.1046/j.1095-8649.2003.00154.x
  35. Vincent, A. C. J., K. L. Evans, and A. D. Marsden, 2005. Home range behaviour of the monogamous Australian seahorse, Hippocampus whitei, Environmental of Biology of Fishes, 72, 1-12 https://doi.org/10.1007/s10641-004-4192-7
  36. Watanabe, T., C. Kitajima, and S. Fujita, 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34, 115-143 https://doi.org/10.1016/0044-8486(83)90296-X
  37. Woods, C. M. C., 2000a. Preliminary observation on breeding and rearing the seahorse Hippocampus abdominalis (Teleostei: Syngnathidae) In captivity. New zealand Journal of Marine and Freshwater Reasearch, 34, 475-485 https://doi.org/10.1080/00288330.2000.9516950
  38. Woods, C. M. C., 2000b. Improving initial survival in cultured seahorses, Hippocampus abdominalis Lesson, 1827 (Teleostei: Syngnathidae). Aquaculture, 190, 377-388 https://doi.org/10.1016/S0044-8486(00)00408-7
  39. Woods, C, M. C. and K. M. Martin-Smith, 2004. Visible implant fluorescent elastomer tagging of the big-bellied seahorse, Hippocampus abdominalis. Fisheries Research, 66, 363-371 https://doi.org/10.1016/S0165-7836(03)00183-8
  40. Young, M. W., 1926. Marine biological notes No. 2: The spawnng of the seahorse. N. Z. Journal of Science and Technology, 8, 284 pp
  41. 三谷文夫. 1956. タツノオトシゴ (Hippocampus coronatus T. and S.) に見られる刑狀及び色彩の個異. 動物學雜誌, 65, 66-73