Influences of Parental Pairs on Progeny Sex Ratios of Nile Tilapia Oreochromis niloticus

틸라피아 Oreochromis niloticus의 성비 결정에 미치는 암수어미의 영향

  • Kwon Joon-Yeong (Department of Applied Biological Sciences, Sunmoon University) ;
  • Kwon Hyuk-Chu (Department of Applied Biological Sciences, Sunmoon University) ;
  • Penman David J. (Institute of Aquaculture, University of Stirling)
  • Published : 2006.05.01

Abstract

Sex of the Nile tilapia Oreochromis niloticus is mainly determined by an XX/XY system. However, accumulating evidences suggest the existence of additional sex modifying factors including environmental, autosomal and parental influences. In order to investigate the possibility of parental effects on sex ratios of tilapia progenies, in this study, a series of crosses was carried out using gynogenetic clonal fish, neomales, normal males and females, and YY fish. Crosses between clonal XX male and clonal female have yielded only female progenies and no parental influences were observed. However, in the crosses between clonal males and normal females, female parents were significantly associated with the progeny sex ratios ($X^2$=20.046, 7 d.f., p<0.01). Progeny sex ratios from the crosses between neomales and normal females ($X^2$=60.491, 5 d.f and $X^2$=28.072, 2 d.f.) also showed significant association with female parents (P<0.001). The stability of progeny sex ratios from repeated spawns were confirmed by using 6 different parental pairs. In 16 crosses between normal males and normal females, sex ratios of progenies showed clear maternal influences, and further analysis of the results revealed a negative correlation ($r^2$=0.7718, p<0.05) between the sex ratios of progenies from two different males, indicating a strong paternal influence. No statistically significant relationship between survival rates and sex ratios of progenies was observed in any genotypic groups. Taken together, the influence of parental pairs on progeny sex ratios in this species is evident although the cause of this influence is not clear.

Keywords

References

  1. Abucay, J. S., G. C. Mair, D. O. F. Skibinski and J. A. Beardmore, 1999. Environmental sex determination: The effects of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture, 173, 219-234 https://doi.org/10.1016/S0044-8486(98)00489-X
  2. Andersson, R. and S. Bergstrom, 1998. Is maternal malnutrition associated with a low sex ratio at birth? Human Biology, 70, 1101-1106
  3. Baroiller, J. F., D. Chourrout, A. Fostier and B. Jalabert, 1995. Temperature and sex chromosomes govern sex ratios of the mouthbrooding cichlid fish Oreochromis niloticus. J. Exp. Zool., 273, 216-223 https://doi.org/10.1002/jez.1402730306
  4. Baroiller, J. F., Y. Guiguen and A. Fostier, 1999. Endocrine and environmental aspects of sex differentiation in fish. Cell. Mol. Life Sci., 55, 910-931 https://doi.org/10.1007/s000180050344
  5. Bradbury, R. R. and J. K. Blakey, 1998. Diet, maternal condition, and offspring sex ratio the zebra finch, Poephila guttata. Proc. Royal Soc. London B, 265, 895-899
  6. Conover, D. O. and B. E. Kynard, 1981. Environmental sex determination: Interaction of temperature and genotype in a fish. Science, 213, 577-579 https://doi.org/10.1126/science.213.4507.577
  7. Fisher, D. O., 1999. Offspring sex ratio variation in the bridled nailtail wallaby, Onychogalea fraenta. Behavior. Eco. Sociobiol., 45, 411-419 https://doi.org/10.1007/s002650050578
  8. Grant, V. J., 1996. Sex determination and the maternal dominance hypothesis. Human Reprod., 11, 2371-2375 https://doi.org/10.1093/oxfordjournals.humrep.a019117
  9. Guerrero, R. D. and W. L. Shelton, 1974. An aceto-carmine squash method of sexing juvenile fishes. Prog. Fish-Cult., 36, 56 https://doi.org/10.1577/1548-8659(1974)36[56:AASMFS]2.0.CO;2
  10. Hardy, I. C. W., 1997. Possible factors influencing vertebrate sex ratios: An introductory overview. Appl. Animal Behaviour Sci., 51, 217-241 https://doi.org/10.1016/S0168-1591(96)01106-9
  11. Hussain, M. G., B. J. McAndrew, D. J. Penman and P. Sodsuk, 1994. Estimate gene-centromere recombination frequencies in gynogenetic diploids of Oreochromis niloticus (L.) using allozymes, skin colour and a putative sex-determination locus (SDL-2). (in) A.R. Beaumont (ed.), Genetics and Evolution of Aquatic Organisms, Chapman and Hall, London, pp. 502-508
  12. James, W. H., 1996. Evidence that mammalian sex ratios at birth are partially controlled by parental hormonal levels at the time of conception. J. Theo. Biol., 180, 271-286 https://doi.org/10.1006/jtbi.1996.0102
  13. Kruuk, L. E. B., T. H. CluttonBrock, S. D. Albon, J. M. Pemberton and F. E. Guinness, 1999. Population density affects sex ratio variation in red deer. Nature, 399, 459-461 https://doi.org/10.1038/20917
  14. Kwon, J. Y., B. J. McAndrew and D. J. Penman, 2002.Treatment with an aromatase inhibitor suppresses high-temperature feminization of genetic male (YY) Nile tilapia. J. Fish Biol., 60, 625-636 https://doi.org/10.1111/j.1095-8649.2002.tb01689.x
  15. Mair, G. C., J. S. Abucay, D. O. F. Skibinski, T. A. Abella and J. A. Beardmore, 1997. Genetic manipulation of sex ratio for the large-scale production of all-male tilapia, Oreochromis niloticus. Can. J. Fish. Aqua. Sci., 54, 396-404 https://doi.org/10.1139/cjfas-54-2-396
  16. Mair, G. C., A. G. Scott, D. J. Penman, J. A. Beardmore and D. O. F. Skibinski, 1991a. Sex determination in the genus Oreochromis. 1. Sex reversal, gynogenesis and triploidy in O. niloticus (L.). Theo. Appl. Genetics, 82, 144-152 https://doi.org/10.1007/BF00226205
  17. Mair, G. C., A. G. Scott, D. J. Penman, D. O. F. Skibinski and J. A. Beardmore, 1991b. Sex determination in the genus Oreochromis. 2. Sex reversal, hybridisation, gynogenesis and triploidy in O. aureus Steindachner. Theo. Appl. Genetics, 82, 153-160 https://doi.org/10.1007/BF00226206
  18. Monard, A. M., P. Duncan, H. Fritz and C. Feh, 1997. Variations in the birth sex ratio and neonatal mortality in a natural herd of horses. Behavior. Eco. Sociobiol., 41, 243-249 https://doi.org/10.1007/s002650050385
  19. Moses, R. A., G. J. Hickling and J. S. Millar, 1995. Variation in sex ratios of offspring in wild bushy-tailed woodrats. J. Mammal., 76, 1047-1055 https://doi.org/10.2307/1382598
  20. Nager, R. G., P. Monaghan, R. Griffith, D. C. Houston and R. Dawson, 1999. Experimental demonstration that offspring sex ratio varies with maternal condition. Proc. Natl. Acad. Sci. USA, 96, 570-573
  21. Sarder, M. R. I., D. J. Penman, J. M., Myers and B. J. McAndrew, 1999. Production and propagation of fully inbred clonal lines in the Nile tilapia (Oreochromis niloticus L.). J. Exp. Zool., 284, 675-685 https://doi.org/10.1002/(SICI)1097-010X(19991101)284:6<675::AID-JEZ9>3.0.CO;2-D
  22. Shelton, W. L., F. H. Meriwether, K. J. Semens and W. E. Calhoun, 1983. Progeny sex ratios from interspecific pair spawnings of Tilapia aurea and T. nilotica. (in) L. Fishelson and Z. Yaron (ed.), Proceedings of the International Symposium on Tilapia in Aquaculture, Tel Aviv University, Tel Aviv, Israel, pp. 425-434
  23. Tuan, P. A., G. C. Mair, D. C. Little and J. A. Beardmore, 1999. Sex determination and the feasibility of genetically male tilapia production in the Thai-Chitralada strain of Oreochromis niloticus (L.). Aquaculture, 173, 257-269 https://doi.org/10.1016/S0044-8486(98)00450-5
  24. Wohlfarth, G. W. and H. Wedekind, 1991. The heredity of sex determination in tilapias. Aquaculture, 92, 143-156 https://doi.org/10.1016/0044-8486(91)90016-Z
  25. Zar, J. H., 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 718 pp