In Vivo Immunopotentiating Effects of Cellular Components from Lactococcus lactis ssp. lactis

  • Kim Ji-Yeon (Department of Food Standard Evaluation, Korea Food & Drug Administration) ;
  • Lee Seong-Kyu (Department of Applied Biological Chemistry, The University of Tokyo) ;
  • Jeong Do-Won (School of Agricultural Biotechnology, and Center of Agricultural Biomaterials, Seoul National University) ;
  • Hachimura Satoshi (Department of Applied Biological Chemistry, The University of Tokyo) ;
  • Kaminogawa Shuichi (Department of Food Science and Technology, College of Bioresource Science, Nihon University) ;
  • Lee Hyong-Joo (School of Agricultural Biotechnology, and Center of Agricultural Biomaterials, Seoul National University)
  • Published : 2006.05.01

Abstract

Cellular components of Lactococcus lactis ssp. lactis (heat-killed whole cells, cytoplasm, and cell walls) were tested for their in vivo immunopotentiating activity. Peritoneal macrophages from mice orally administered with heat-killed whole cells exhibited significantly greater phagocytic activity than the groups administered with cell-wall fraction or cytoplasm fraction. The cytotoxicity of natural-killer cells was the highest in the group administered with whole cells, and the production of cytokines ($IFN-\gamma$, IL-2, and IL-12) in spleen cells was significantly higher, when cellular components were injected, and it tended to be higher in the cell-wall and cytoplasm groups than in the whole-cell group. Interestingly, the cytokine production of Peyer's patch cells was high, when cytoplasm fractions were administered. These results demonstrate that whole cells and cytoplasm and cell-wall fractions of L. lactis ssp. lactis have immunopotentiating activities, which are related to the stimulation of Peyer's patches.

Keywords

References

  1. Bae, E.-A., N.-Y. Kim, M. J. Han, M.-K. Choo, and D.-H. Kim. 2003. Transformation of ginsenosides to compound K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechnol. 13: 9-14
  2. Cross, M. L., R. R. Mortensen, J. Kudsk, and H. S. Gill. 2002. Dietary intake of Lactobacillus rhamnosus HN001 enhances production of both Th1 and Th2 cytokines in antigen-primed mice. Med. Microbiol. Immunol. 191: 49-53 https://doi.org/10.1007/s00430-002-0112-7
  3. De Simone, C., R. Vesely, R. Negri, S. B. Bianchi, S. Zanzoglu, A. Cilli, and L. Lucci. 1987. Enhancement of immune response of murine Peyer's patches by a diet supplemented with yogurt. Immunopharmacol. Immunotoxicol. 9: 87-100 https://doi.org/10.3109/08923978709035203
  4. Gill, H. S., K. J. Rutherfurd, J. Prasad, and P. K. Gopal. 2000. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 83: 167-176 https://doi.org/10.1017/S0007114500000210
  5. Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 7: 175-188 https://doi.org/10.1111/j.1574-6941.1990.tb01683.x
  6. Haller, D., S. Blum, C. Bode, W. Hammes, and E. J. Schiffrin. 2000. Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: Evidence of NK cells as primary targets. Infect. Immun. 68: 752-759 https://doi.org/10.1128/IAI.68.2.752-759.2000
  7. Hessle, C., L. A. Hanson, and A. E. Wold. 1999. Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production. Clin. Exp. Immunol. 116: 276-282 https://doi.org/10.1046/j.1365-2249.1999.00885.x
  8. Kato, I., K. Tanaka, and T. Yokokura. 1999. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-${\gamma}$ by mouse splenocytes. Int. J. Immunopharmacol. 21: 121-131 https://doi.org/10.1016/S0192-0561(98)00072-1
  9. Kato, I., T. Yokokura, and M. Mutai. 1984. Augmentation of mouse natural killer cell activity by Lactobacillus casei and its surface antigens. Microbiol. Immunol. 28: 209-217 https://doi.org/10.1111/j.1348-0421.1984.tb00672.x
  10. Kelly, J. M., P. K. Darcy, J. L. Markby, D. I. Godfrey, K. Takeda, H. Yagita, and M. J. Smyth. 2002. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nature Immunol. 3: 83-90 https://doi.org/10.1038/ni746
  11. Kim, H.-J., J.-H. Kim, J. H. Son, H.-J. Seo, S.-J. Park, N.-S. Paek, and S.-K. Kim. 2003. Characterization of bacteriocin produced by Lactobacillus bulgaricus. J. Microbiol. Biotechnol. 14: 503-508
  12. Kim, J. Y., S. Lee, S. Hachimura, S. Kaminogawa, and H. J. Lee. 2003. In vitro immunopotentiating activity of cellular component of Lactococcus lactis ssp. lactis. J. Microbiol. Biotechnol. 13: 202-206
  13. Lee, H.-Y., J.-H. Park, S.-H. Seok, S.-A. Cho, M.-W. Baek, D.-J. Kim, Y.-H. Lee, and J.-H. Park. 2004. Dietary intake of various lactic acid bacteria suppresses type 2 helper T cell production in antigen-primed mice splenocyte. J. Microbiol. Biotechnol. 14: 167-170 https://doi.org/10.1159/000078108
  14. Murosaki, S., K. Muroyama, Y. Yamamoto, and Y. Yoshikai. 2000. Antitumor effect of heat-killed Lactobacillus plantarum L-137 through restoration of impaired interleukin-12 production in tumor-bearing mice. Cancer Immunol. Immunother. 49: 157-164 https://doi.org/10.1007/s002620050615
  15. Ouwehand, A. C., S. Salminen, and E. Isolauri. 2002. Probiotics: An overview of beneficial effects. Antonie van Leeuwenhoek 82: 279-289 https://doi.org/10.1023/A:1020620607611
  16. Perdigon, G., S. Alvarez, and H. A. P. de Ruiz. 1991. Immunoadjuvant activity of oral Lactobacillus casei: Influence of dose on the secretory immune response and protective capacity in intestinal infections. J. Dairy Res. 58: 485-496 https://doi.org/10.1017/S0022029900030090
  17. Perdigon, G., M. E. N. de Macias, S. Alvarez, G. Oliver, and H. A. P. de Ruiz. 1986. Effect of orally administered lactobacilli on macrophage activation in mice. Infect. Immun. 53: 404-410
  18. Perdigon, G., M. E. N. de Macias, S. Alvarez, G. Oliver, and H. A. P. De Ruiz. 1990. Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. J. Dairy Sci. 57: 255-264
  19. Perdigon, G., M. E. Nader de Macias, S. Alvarez, M. Medici, G. Oliver, and H. A. A. Pesce de Ruiz. 1987. Enhancement of immune response in mice fed with Streptococcus thermophilus and Lactobacillus acidophilus. J. Dairy Sci. 70: 919-926 https://doi.org/10.3168/jds.S0022-0302(87)80095-4
  20. Saito, H., H. Tomioka, and K. Nagashima. 1987. Protective and therapeutic efficacy of Lactobacillus casei against experimental murine infections due to Mycobacterium fortuitum complex. J. Gen. Microbiol. 133: 2843-2851
  21. Takagi, A., T. Matsuzaki, M. Sato, K. Nomoto, M. Morotomi, and T. Yokokura. 2001. Enhancement of natural killer cytotoxicity delayed murine carcinogenesis by a probiotic microorganism. Carcinogenesis 22: 599-605 https://doi.org/10.1093/carcin/22.4.599
  22. Yasutake, N., T. Matsuzaki, K. Kimura, S. Hashimoto, T. Yokokura, and Y. Yoshikai. 1999. The role of tumor necrosis factor (TNF)-${\alpha}$ in the antitumor effect of intrapleural injection of Lactobacillis casei strain Shirota in mice. Med. Microbiol. Immunol. 188: 9-14 https://doi.org/10.1007/s004300050099
  23. Yoshizawa, Y., J. Tsunehiro, K. Nomura, M. Itoh, F. Fukui, A. Ametani, and S. Kaminogawa. 1996. In vivo macrophagestimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa). Biosci. Biotechnol. Biochem. 60: 1667-1671 https://doi.org/10.1271/bbb.60.1667