References
- H. Bergstrom, Weak convergence of measures, Academic Press, 1982
- P. Billingsley, Convergence of probability measures, John Wiley & Sons, New York, 1968
- C. W. Burrill, Measure, integration and probability, McGraw-Hill, New York, 1972
- R. H. Cameron and D. A. Storvick, An operator-valued function space integral and a related integral equation, J. Math. Mech. 18 (1968), 517-552
- D. L. Cohn, Measure theory, Birkhauser, Boston, 1980
- J. Diestel and J. J. Uhl, Vector measures, Mathematical Survey, Amer. Math. Soc. Providence, 1977
- N. Dunford and J. T. Schwartz, Linear operators, part I, general theory, Pure and Applied Mathematics, Vol. VII, Wiley Interscience, New York, 1958
- P. R. Halmos, Measure theory, Springer-Verlag, New York, 1950
- E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, 1965
- G. W. Johnson and M. L. Lapidus, Generalized Dyson series, generalized Feyn- man diagrams, the Feynman integral and Feynman's operational calculus, Memoirs Amer. Math. Soc. 62 (1986), no. 351, 1-78
- G. W. Johnson and M. L. Lapidus, The Feynman integral and Feynman's operational calculus, Oxford Mathematical Monographs, Oxford Univ. Press, 2000
- I. Kluvanek, Operator valued measures and perturbations of semi-groups, Arch. Rational Mech. Anal. 81 (1983), no. 2, 161-180 https://doi.org/10.1007/BF00250650
- I. Kluvanek and G. Knowles, Vector measures and control systems, Math. Stud ies, no. 20, Amsterdam, North-Holland, 1975
- M. L. Lapidus, The Feynman-Kac formula with a Lebesgue-Stieltjes measure and Feynman's operational calculus, Stud. Appl. Math. 76 (1987), no. 2, 93-132 https://doi.org/10.1002/sapm198776293
- M. L. Lapidus, Strong product integration of measures and the Feynman-Kac formula with a Lebesgue-Stieltjes measure, Rend. Circ. Math. Palermo (2) Suppl. No. 17 (1987), 271-312
- M. L. Lapidus, The Feynman-Kac formula with a Lebesgue-Stieltjes measure: An inte- gral equation in the general case, Integral Equations Operator Theory 12 (1989), no. 2, 163-210 https://doi.org/10.1007/BF01195113
- D. R. Lewis, Integration with respect to vector measure, Pacific J. Math. 33 (1970), no. 1, 157-165 https://doi.org/10.2140/pjm.1970.33.157
-
G. G. Okikiolu, Aspect of the theory of bounded linear operators in
$L_p$ space, Academic Press, London, 1971 - K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, 1967
- W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1987
- K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951 https://doi.org/10.1090/S0002-9947-02-03077-5
- K. S. Ryu and M. K. Im, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819 https://doi.org/10.4134/JKMS.2002.39.5.801
- C. Schwarz, Vector measures of bounded variation, Rev. Roum. Math. Pures. ET Appl Tome XVII (1972), no. 10, 1703-1704
- H. G. Tucker, A graduate course in probability, Academic Press, New York, 1967
- J. Yeh, Inversion of conditional expectations, Pacific J. Math. 52 (1974), no. 2, 631-640 https://doi.org/10.2140/pjm.1974.52.631
- J. Yeh, Stochastic processes and the Wiener integral, Marcel Deckker, New York, 1973
Cited by
- Survey of the Theories for Analogue of Wiener Measure Space vol.15, pp.3, 2009, https://doi.org/10.4036/iis.2009.319
- THE SIMPLE FORMULA OF CONDITIONAL EXPECTATION ON ANALOGUE OF WIENER MEASURE vol.30, pp.4, 2008, https://doi.org/10.5831/HMJ.2008.30.4.723
- THE ROTATION THEOREM ON ANALOGUE OF WIENER SPACE vol.29, pp.4, 2007, https://doi.org/10.5831/HMJ.2007.29.4.577
- EVALUATION E(exp(∫0th(s)dx(s)) ON ANALOGUE OF WIENER MEASURE SPACE vol.32, pp.3, 2010, https://doi.org/10.5831/HMJ.2010.32.3.441