Synthesis and Characterization of Amphiphilic Polyurethanes as Coating Materials for Urinary Catheters

요도용 카테타 도포용 양친성 폴리우레탄의 합성 및 분석

  • Park Jae-Hyung (College of Environment and Applied Chemistry, Kyung Hee University) ;
  • Kim Kwang-Meyung (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Chung Hes-Son (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Kwon Ick-Chan (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Bae You-Han (Department of Pharmaceutics & Pharmaceutical Chemistry, University of Utah) ;
  • Jeong Seo-Young (Department of Pharmaceutics, College of Pharmacy, Kyung Hee University)
  • 박재형 (경희대학교 환경.응용화학대학) ;
  • 김광명 (한국과학기술연구원 의과학연구센터) ;
  • 정혜선 (한국과학기술연구원 의과학연구센터) ;
  • 권익찬 (한국과학기술연구원 의과학연구센터) ;
  • 배유한 (유타대학교 악학대학) ;
  • 정서영 (경희대학교 약학대학)
  • Published : 2006.05.01

Abstract

The long-term use of indwelling urinary catheters can allow bacterial adhesion to their surfaces, followed by the catheter-associated urinary tract infection. In an attempt to minimize the bacterial adhesion, various amphiphilic polyurethanes (APUs) were synthesized as potential coating materials for urinary catheters. By varying composition of the soft segments such as PEO, PTMO, and PDMS, four different polyurethanes were synthesized. All the APU-coated urinary catheters had the smooth surfaces and showed higher hydrophilicity, compared to the commercial silicone catheters. In particular, the use of APUs with the higher PEG content significantly augmented hydrophilicity and remarkably reduced the total amount of bacteria adhering to the surface. Overall, the APUs prepared in this study provided the promising potential as coating materials for urinary catheters.

환자가 요도용 카테타를 장기간 착용할 경우 세균흡착에 의한 감염이 유발되어 심각한 부작용을 경험하게 된다. 본 연구에서는 다양한 양친성 폴리우레탄을 합성하여 요도용 카테타 도포용 소재로서의 응용가능성을 확인하고자 하였다. 양친성 폴리우레탄은 친수성 고분자인 poly(ethylene oxide)(PEO)와 소수성 고분자인 poly (tetramethylene oxide) (PTMO) 또는 poly (dimethyl siloxane) (PDMS)을 연질부로 도입하여 합성하였다. 상용 실리콘 카테타에 양친성 고분자를 도포한 결과 표면의 친수성이 현저히 개선되었다. 특히, PEO의 함량이 많은 폴리우레탄일수록 친수성이 높게 나타났으며, 세균 흡착량이 감소함을 확인할 수 있었다. 결론적으로, 본 연구에서 합성한 양친성 고분자는 요도용 카테타의 도포용 소재로 적합한 것을 알 수 있었다.

Keywords

References

  1. W. E. Stamm, Am. J. Med., 91(Suppl 3B), 65S (1991) https://doi.org/10.1016/0002-9343(91)90345-X
  2. D. A. Bronsema, J. R. Adams, R. Pallares, and R. P. Wenzel, J. Urol., 150, 414 (1993) https://doi.org/10.1016/S0022-5347(17)35497-6
  3. W. R. Jarvis, Infect. Control. Hosp. Epidemiol., 17, 552 (1996) https://doi.org/10.1086/647371
  4. F. Paradisi, G. Corti, and V. Mangani, Crit. Care Clin., 14, 165 (1998) https://doi.org/10.1016/S0749-0704(05)70390-0
  5. J. L. Vincent, D. J. Bihari, and P. M. Suter, J. Am. Med. Ass., 274, 639 (1995) https://doi.org/10.1001/jama.274.8.639
  6. N. S. Morris, D. J. Stickler, and R. J. C. McLean, World J. Urol., 17, 345 (1999) https://doi.org/10.1007/s003450050159
  7. R. Plat, B. F. Polk, B. Murdock, and B. Rosner, N. Engl. J. Med., 307, 637 (1982) https://doi.org/10.1056/NEJM198209093071101
  8. C. Bryan and K. Reynols, J. Urol., 132, 494 (1984) https://doi.org/10.1016/S0022-5347(17)49707-2
  9. S. Saint, Am. J. Infect. Control., 28, 68 (2000) https://doi.org/10.1016/S0196-6553(00)90015-4
  10. D. J. Stickler, N. S. Morris, and T. J. Williams, Br. J. Urol., 78, 579 (1996) https://doi.org/10.1046/j.1464-410X.1996.16915.x
  11. M. M. Gabriel, M. Mayo, L. L. May, R. B. Simmons, and D. G. Ahearn, Curr. Microbiol., 33, 1 (1996) https://doi.org/10.1007/s002849900064
  12. J. H. Park, Y. W. Cho, I. C. Kwon, S. Y. Jeong, and Y. H. Bae, Biomaterisls, 23, 3991 (2002) https://doi.org/10.1016/S0142-9612(02)00144-8
  13. N. M. K. Lamba, K. A. Woodhouse, and S. L. Cooper, Polyurethanes In Biomedical Applications, CRC Press, New York, 1998
  14. J. H. Park, K. D. Park, and Y. H. Bae, Biomaterials, 20, 943 (1999) https://doi.org/10.1016/S0142-9612(98)00250-6
  15. J. H. Park, K. B. Lee, I. C. Kwon, and Y. H. Bae, J. Biomater. Sci. Polym. Edn., 12, 629 (2001) https://doi.org/10.1163/156856201316883458
  16. J. H. Park and Y. H. Bae, Biomaterials, 23, 1797 (2002) https://doi.org/10.1016/S0142-9612(01)00306-4
  17. J. H. Park and Y. H. Bae, J. Appl. Polym. Sci., 89, 1505 (2003) https://doi.org/10.1002/app.12217
  18. J. H. Park and Y. H. Bae, J. Biomed. Mater. Res., 64A, 309 (2003) https://doi.org/10.1002/jbm.a.10424
  19. J. H. Park and Y. H. Bae, J. Biomater. Sci. Polym. Edn., 13, 527 (2002) https://doi.org/10.1163/15685620260178382
  20. R. H. Dettre and R. E. Johnson, J. Phys. Chem., 69, 1507 (1965) https://doi.org/10.1021/j100889a012
  21. A. H. Hogt, D. E. Gregonis, J. D. Andrade, S. W. Kim, J. Dankert, and J. Feijen, J. Colloid Interf. Sci., 106, 289 (1985) https://doi.org/10.1016/S0021-9797(85)80002-3
  22. J. W. Warren, Int. J. Antimicrob. Agents, 17, 299 (2001) https://doi.org/10.1016/S0924-8579(00)00359-9
  23. D. G. Maki, Am. J. Med., 70, 719 (1981) https://doi.org/10.1016/0002-9343(81)90603-3
  24. D. J. Stickler, L. Ganderton, and J. King, Urol. Res., 21, 407 (1993)
  25. S. Sarangapani, K. Cavedon, and D. Gage, J. Biomed. Mater. Res., 29, 1185 (1995) https://doi.org/10.1002/jbm.820291005
  26. A. G. Gristina, Science, 237, 1588 (1987) https://doi.org/10.1126/science.3629258
  27. Y. Ong, A. Razatos, G. Georgiou, and M. M. Sharma, Langmuir, 15, 2719 (1999) https://doi.org/10.1021/la981104e