Characteristics of Flame Hardening Process for 12Cr Steels

12Cr 강의 이동 화염경화 공정 특성

  • Kim Gwang-Ho (Department of Materials Engineering, Chungnam National University) ;
  • Lee Min-Ku (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute) ;
  • Kim Kyeong-Ho (Nuclear Materials Technology Development team, Korea Atomic Energy Research Institute) ;
  • Kim Whung-Whoe (Nuclear Materials Technology Development team, Korea Atomic Energy Research Institute) ;
  • Rhee Chang-Kyu (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute) ;
  • Kim Gil-Mu (Department of Materials Engineering, Chungnam National University)
  • 김광호 (충남대학교 재료공학과) ;
  • 이민구 (한국원자력연구소 원자력나노소재응용랩) ;
  • 김경호 (한국원자력연구소 재료기술개발부) ;
  • 김흥회 (한국원자력연구소 재료기술개발부) ;
  • 이창규 (한국원자력연구소 원자력나노소재응용랩) ;
  • 김길무 (충남대학교 재료공학과)
  • Published : 2006.04.01

Abstract

In this study, the movable flame hardening process of 12Cr steel for a uniform hardness and desirable residual stress have been investigated. For this, the temperature cycles have been controlled accurately as a function of the three processing variables, the flame intensity $I_f$, the scanning velocity $V_s$, and the initial flame holding time $t_h$, where the standard surface temperature $T_{s,\;max}$, was maintained at $960^{\circ}C$. The optimized conditions were $V_s=0.68mn/s\;and\;t_h=67sec$ for the $C_3H_8:O_2\;=\;5:20l/min,\;V_s=0.80mm/s$ and $t_h=56sec$ for the $C_3H_8:O_2=6:24l/min,\;V_s=1.01mm/s\;and\;t_h=48sec$ for the $C_3H_8:O_2=7:28l/min,\;and\;V_s=1.15mm/s$ and $t_h=39sec$ for the $C_3H_8:O_2$=8:32 l/min. The optimally flame-hardened surface exhibited uniform distributions of the hardness and residual compressive stress over the treated area with moderate levels of $470{\sim}490HV_{0.2}$in hardness and $-300{\sim}-450MPa$ in residual stress, which were acceptable on the basis of the acceptance criteria of Siemens AG-KWU and GE Power Generation Engineering.

Keywords

References

  1. I. R. Pashby, S. Barnes, B. G. Bryden, J. Mat. Processing Tech., 139 (2003) 585 https://doi.org/10.1016/S0924-0136(03)00509-0
  2. S. F. Luk, T. P. Leung, W. S. Miu, I. Pashby, J. Mat. Processing Tech., 91 (1999) 245 https://doi.org/10.1016/S0924-0136(98)00441-5
  3. M. K. Lee, G. H. Kim, K. H. Kim, W. W. Kim, Surf. Coat. Tech., 184 (2004) 239 https://doi.org/10.1016/j.surfcoat.2003.10.063
  4. K. Schleithoff, F. Schmitz, Workshop Proceedings, edited by R. I. Jaffee, Palo Alto, CA, Sep. 21-24, EPRI, Pergamon Press, (1981) 2-70
  5. M. Heitkemper, C. Bohne, A. Pyzalla, A. Fischer, Int. J. Fatigue, 25 (2003) 101 https://doi.org/10.1016/S0142-1123(02)00074-9
  6. E. Stuecker, G. Gartner, H. J. Hamel, Steam and Combustion Turbine Blading conference and Workshop, Orlando, Florida, (1992) 1
  7. Process specification, Materials and Process Engineering, GE Power Engineering, Schenectady, NY, (1995) 14
  8. B. D. Cullity, Elements of X-ray diffraction (Addison-Wesley, Reading, MA) 2nd ed., 447 (1978)
  9. J. M. Char, J. H. Yeh, J. Quant. Specrosc. Radiat. Transfer, 56(1) (1996) 133 https://doi.org/10.1016/0022-4073(96)00013-1
  10. M. Melander, Yao Shanchang, T. Ericsson, In Proc. 3rd Int. Congress on Heat Treatment of Materials, Shanghai, PT (1984) NOV, 2.75-7.85
  11. Bekir Sami Yilbas, Muhammad Sami, Shahzada Zaman Shuja. Optics and Lasers in Engineering, 30 (1998) 25 https://doi.org/10.1016/S0143-8166(98)00008-6
  12. S. Sen, B. Aksakal, A. Ozel, Int. J. Mech. Sci. 42 (2000) 2013 https://doi.org/10.1016/S0020-7403(99)00063-6
  13. Janez Grum, J. Mat. Processing Tech., 114 (2001) 212 https://doi.org/10.1016/S0924-0136(01)00562-3