DOI QR코드

DOI QR Code

The Quality Properties of Self-Compacting Concrete Mixed with Tailing from the Sangdong Tungsten Mine

상동광산 광미를 혼합한 자기충전 콘크리트의 품질 특성

  • Choi, Yun-Wang (Dept. of Civil Engineering, Semyung University) ;
  • Kim, Yong-Jic (Dept. of Civil Engineering, Ryerson University) ;
  • Choi, Wook (Korea Infrastructure Safety & Technology Corporation)
  • Published : 2006.12.31

Abstract

This study has focused on the possibility for recycling of tailings from the Sangdong tungsten mine as powder(TA) of self-compacting concrete(SCC). The experimental tests for slump-flow, time required to reach 500 mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The results of this study, slump-flow of SCC was satisfied a prescribed range. And time required to reach 500 mm of slump flow(sec) and time required to flow through V-funnel(sec) decreased with increasing replacement of TA. But filling height of U-box test(mm), replacement of TA up to 30% were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standards(KS). The compressive strength of SCC decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete. The fundamental durability was reviewed through the dry shrinkage rate and accelerated carbonation tests. As the result dry shrinkage rate and accelerated carbonation depth increased with increasing replacement of TA.

본 연구에서는 상동지역 중석광 광미를 콘크리트용 혼화재료로 사용하기 위한 연구의 일환으로 자기충전 콘크리트의 분체로서 적용가능성을 검토하였다. 상동지역 중석광 광미를 혼합한 자기충전 콘크리트의 자기충전성을 평가는 일본의 토목학회 기준을 적용한 슬럼프플로우, 슬럼프플로우 500mm 도달시간, V-funnel 유하시간 및 U-box 충전높이 시험을 실시하여 검토하였다. 그 결과 슬럼프 플로우는 목표기준을 만족하였으며, 슬럼프플로우 500mm도달시간 및 V-funnel 유하시간은 상동지역 중석광 광미의 혼합률이 증가함에 따라 측정시간이 감소하였으며, U-box 충전높이는 상동지역 중석광 광미의 혼합률 30% 까지 목표기준을 만족하였다. KS 규준에 의해 평가된 역학적 특성 검토 결과는 압축강도의 경우 상동지역 중석광 광미의 혼합률이 증가함에 따라 압축강도는 감소하였고, 쪼갬인장강도 및 탄성계수는 기존의 연구 경향과 유사하였다. 건조수축률 및 탄산화 깊이는 상동지역 중석광 광미의 혼합률이 증가함에 따라 비례적으로 증가하는 경향을 나타내었다.

Keywords

References

  1. 정수복, '석탄광산 폐석의 유효 이용 방안 연구', KR-04(C)-19, 한국지질자원연구원, 산업자원부, 2004, pp.23-24
  2. 채영배, '유해폐광미의 감량화/무해화를 위한 고도 선별.처리기술개발 연구', KR-04(C)-16, 한국지질자원연구원, 환경부, 2004, pp.35-36
  3. 서정률, '국내 금속광산의 현황', KlGAM Bulletin, Vol.9, No.1, pp.22-47
  4. 김휘중, 양재의, 이재영, 전상호, '휴.폐광산지역에서 폐재내 중금속의 존재형태 및 용출특성에 관한 연구', 한국지하수토양환경학회지, 8권 3호, 2003, pp.45-55
  5. 송원경, '금속광산 지영 지반침하 위험도 평가 연구', KR-04(C)-13, 한국지질자원연구원, 산업자원부, 2004, pp.15-16
  6. 김대형, 권현호, '광산피해의 방지 및 복구에 관한 법률', KIGAM Bulletin, Vol.9, No.4, pp.32-40
  7. 최연왕, 정문영, 정명채, 구기정, '상동광산 광미를 콘크리트용 혼화재료로 사용하기 위한 모르타르의 품질 특성', 콘크리트학회 논문집, 16권 3호, 2004, pp.383-390
  8. 최연왕, 김용직, 정문영, '상동광산 광미를 혼합한 자기출전 콘크리트의 유동 및 강도 특성', 대한토목학회 논문집, 26권 4A호, 2006, pp.767-774
  9. 최연왕, 정문영, 정명채, 구기정, '상동광산 광미를 혼합한 시멘트 페이스트의 레올로지 특성', 2004년도 한국콘크리트학회 봄 학술발표회 논문집, 한국콘크리트학회, 강원도 평창, 16권 1호, 2004, pp.617-619
  10. Nan, S. and Miao, B., 'A New Method for the Mix Design of Medium Strength Flowing Concrete with Low Cement Content', Cement and Concrete Composite, Vol.25, Issue 2, 2003, pp.215-222 https://doi.org/10.1016/S0958-9465(02)00013-6
  11. Nan, Su., Hsb, K. C., and Cha, H. W. 'A Simple Mix Design Method for Self-Compacting Concrete', Cement and Concrete Research, Vol.31, Issue 12, 2001, pp.1799-1807 https://doi.org/10.1016/S0008-8846(01)00566-X
  12. 김용직, 최연왕, 문한영, '경량굵은골재 밀도에 따른 자기충전 콘크리트의 배합설계', 대한토목학회 논문집, 25권 2A호, 2005, pp.455-462
  13. 최연왕, 정문영, 정지승, 문대중, 안성일, '골재채움률 잔골재 용적비를 고려한 자기충전형 콘크리트의 최적배합', 한국콘크리트학회 가을 학술발표회 논문집, 고려대학교, 14권 2호, 2002, pp.549-554
  14. ASTM C 29/C 29M-97, Test for Unit Weight and Void in Aggregate, American Society of Testing and Material, ASCE, USA, 2002, 4pp
  15. Okamura, H., Self-Compacting High Performance Concrete, Social System Institute, Tokyo, 1999, pp.5-15
  16. Okamura, H., Maekawa, K., and Ozawa ,K., High Performance Concrete, Gihoudou Pub., Tokyo, 1998, pp.5-21
  17. 日本土木學會, '高流動 コンクリ-ト施工指針', 日本土木學會, 東京, 2002, 40pp
  18. 한국콘크리트학회, 최신콘크리트공학, 기문당, 1999, pp.411-412
  19. Mehta, P. K. and Monteiro, P. J. M., Concrete. McGrawHill, New York, 2005, pp.76-78
  20. ACI 318M-05, Building Code Requirements for Structural Concrete and Commentary, ACI Manual of Concrete Practice, ACI, 2005, 99pp
  21. CEB-FIP Model Code 1990, CEB Bulletin' Information No. 213/214, Committee Euro-Intemational Du Beton, Thomas Telford, 1993, pp.39-42
  22. ACI 209R-92, Prediction of Creep, Shrinkage and Temperature Effect in Comcrete Structures, ACI Manual of Concrete Practice, ACI, 1997, 47pp