DOI QR코드

DOI QR Code

Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete

주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화

  • Kim, Kil-Hee (Dept. of Architectural Engineering, Kongju National University)
  • Published : 2006.10.31

Abstract

A shear experiment of one-way monotonic loading was carried out with the shear span ratio as the main experimental variable for reinforced concrete beam. Using the finite element analysis as the experimental analysis tool and the analysis method to compute the shear resistance of small shear span ratio, a new macro-model composed of crooked main strut and sub strut is proposed in consideration of the effect of bond action between re-bar and concrete based on the experimental result. The experimental finding affirmed the validity of the proposed macro-model when the shear span ratio was at or below 0.75 and confirmed that the experimental result was the most consistent with the computed analysis result when the effective factor of concrete compressive strength was set at 0.75.

전단 경간비를 실험 변수로 하여 철근콘크리트 보에 대한 1방향 단조재하의 전단실험을 실시하였다. 실험에 병행하여 실시한 유한요소 해석과 실험결과를 기초로 전단 경간비가 작은 보의 전단내력을 구하는 해석 방법과 주근의 부착작용의 효과를 고려한 crooked main strut과 sub strut으로 구성되는 새로운 매크로 모델을 제안하였다. 그 결과 전단 경간비가 0.75 이하에서 본 연구에서 제안한 매크로 모델이 형성 가능하다는 것과 콘크리트 압축강도의 유효계수를 0.75로 하였을 때 실험 결과와 해석 결과가 가장 잘 일치함을 확인하였다.

Keywords

References

  1. Paulay, T., 'Simulated Seismic Loading of Spandrel Beams', Journal of the Structural Division, ASCE, Vol.97, ST9, pp.2407-2419
  2. Paulay, T., and Binney, J. R., 'Diagonally Reinforced Coupling beams of Shear walls', ACI Special Publication 42, Vol.2, 1974, pp.579-598
  3. Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley & Sons, 1975, pp.645-660
  4. Kim and Kamitani, 'Effect of shear span ratio and reinforcing arrangement on shear and bond capacities of RC beam', Proceedings of the Japan Concrete Institute, Vol.23, 2001. 7, pp.307-312
  5. Nielsen, M. P., Limit Analysis and Concrete Plasticity, Prentice Hall, 1984, 420pp
  6. AIJ, Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Ultimate Strength Concept, Architectural Institute of Japan, Tokyo, 1990, pp.104-150
  7. AIJ, Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelastic Displacement Concept, Architectural Institute of Japan, Tokyo, 1999, pp.138-162
  8. Jirsa, J. O., Maruyama, K., and Ramirez, H., Development of Loading System and Initial Tests Short Columns under Bidirectional Loading, CESRL Report No. 78-2, Sept. 1978
  9. S, Fujii., et al, Effect of Transverse Reinforcement on Splitting Bond Strength, Transactions of the Japan Concrete Institute, Vol.3, 1981, pp.237-244