DOI QR코드

DOI QR Code

Properties of Chemically Activated MSWI(Municipal Solid Waste Incinerator) Mortar

도시 폐기물 소각재를 이용한 화학적 활성화 모르타르의 특성

  • Jo, Byung-Wan (Dept. of Civil Engineering, Hanyang University) ;
  • Kim, Kwang-Il (Dept. of Civil Engineering, Hanyang University) ;
  • Park, Jong-Chil (Dept. of Civil Engineering, Hanyang University / Highway and Transportation Technology Institute) ;
  • Park, Seung-Kook (Dept. of Civil Engineering, Hanyang University)
  • 조병완 (한양대학교 토목공학과) ;
  • 김광일 (한양대학교 토목공학과) ;
  • 박종칠 (한양대학교 토목공학과 / 한국도로공사 도로교통기술원) ;
  • 박승국 (한양대학교 토목공학과)
  • Published : 2006.10.31

Abstract

The recycling of industrial wastes in the concrete manufacturing is of increasing interest worldwide, due to the high environmental impact of the cement and concrete industries and to the rising demand of infrastructures, both in industrialized and developing countries. The production of municipal wastes in the South Korea is estimated at about 49,902 ton per day and only 14.5% of these are incinerated and principally disposed of in landfill. These quantities will increase considerably with the growth of municipal waste production, the progressive closing of landfill, so the disposal of municipal solid waste incinerator(MSWI) ashes has become a continuous and significant issue facing society, both environmentally and economically. MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1,000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development composition variation of such alkali-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H). The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a alkali-activator. Compressive strengths with values in the 40.5 MPa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

산업발전에 따른 인구의 증가와 대량생산은 매년 엄청난 양의 도시폐기물을 발생시키고 그 양은 매일 49,902톤에 이른다. 현재, 매일 발생량의 14.5%인 5,440톤이 소각처리되고 있는데 여기서 발생되는 소각재는 대부분 매립되어지고 있는 실정이다. 그러나 매년 그 양이 증가하고 상대적으로 매립지의 부족현상이 나타나면서, 쓰레기 소각재의 처리 문제는 환경적, 경제적으로 우리사회를 위협하는 문제가 되고 있다. 도시쓰레기 소각재는 $850{\sim}1,000$의 온도에서 쓰레기를 소각하여 발생하는 부산물로서 플라이애쉬와 바텀애쉬로 나뉘어지고, 그 주성분은 $SiO_2,\;CaO,\;Al_2O_3$등의 산화물이다. 본 연구에서는 수세공정을 거친 쓰레기 소각재를 화학적 반응에 의해 경화시켜 모르타르를 제조하고, 알칼리 활성제와 양생조건에 따른 강도발현 특성을 파악하였으며, XRD분석과 SEM-EDS 분석을 통하여 반응 생성물 및 반응 메커니즘을 분석하였다. 실험 결과, 주요 생성물은 포틀랜드시멘트의 수화생성물과 유사한 C-S-H겔 형태의 화합물이었고, ettringite 및 C-A-H 화합물도 생성됨을 확인할 수 있었다. 재령 28일의 압축강도는 고온양생 조건에서 NaOH+물유리를 알칼리 활성제로 사용한 경우 40.5MPa로 가장 높게 나타났으며 잔골재의 50%를 바텀애쉬(bottom ash)로 치환하였을 경우, 19.3MPa의 강도발현을 보였다.

Keywords

References

  1. 환경부, 국립환경연구원, '2002 전국 폐기물 발생 및 처리현황', 환경부, 2003
  2. 환경관리공단, '소각재 안정화 및 재활용기술에 관한 연구', 환경관리공단, 2000. 9
  3. Speiser, C. and Baumann, T., 'Characterization of municipal solid waste incineration (MSWI) bottom ash by scanning electron microscopy and quantitative energy dispersive X-ray microanalysis (SEM/EDX)', Fresenius. J. Anal. Chem., No.370, 2001, pp.752-759 https://doi.org/10.1007/s002160000659
  4. W, K. S., Lin, K. L., and Huang, Z. Q., 'Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement', Cement and Concrete Research, Vol.31, 2001, pp.97-103 https://doi.org/10.1016/S0008-8846(00)00423-3
  5. Palomo, A., M. W. and Grutzeck. M. T. Blanco, 'Alkali-activated fly ashes, A cement for the future', Cement and Concrete Research, Vo.29, 1999, pp.1323-1329 https://doi.org/10.1016/S0008-8846(98)00243-9
  6. Gruyzeck, M., Kwan, Stephen., and Dicola, M., 'Zeolite formation in alkali-activated cementitious systems', Cement and Concrete Research, Vo1.34, 2004, pp.949-955 https://doi.org/10.1016/j.cemconres.2003.11.003
  7. Jeannet, A. Meima and Rob Comans, N. J., 'Geochemical Modeling of Weathering Reactions in Muncipal Solid Waste Incinerator Bottom ash', Environmental Science & Technology, Vol.31, No.5, 1997, pp.1269-1276 https://doi.org/10.1021/es9603158
  8. Lin, C. Fang. and Hsi, H. C., 'Resource Recovery of Waste Fly Ash: Synthesis of Zeolite-like Materials', Environmental Science & Technology, Vol.29, No.4, 1995, pp.1109-1117 https://doi.org/10.1021/es00004a033
  9. Pecqueur, G., Crignon, C., and Quenee, B., 'Behaviour of cement-treated MSWI bottom ash', Waste Management, Vo.21, 2001, pp.229-233 https://doi.org/10.1016/S0956-053X(00)00094-5
  10. Mulder, E., 'Pre-tretrnent of MSWI fly ash for useful application', Waste Management, Vol.16, Nos.1-3, 1996, pp.181-184 https://doi.org/10.1016/S0956-053X(96)00040-2
  11. ACI Committee 318, Building Code Requirement for Structural Concrete and Commentary, American Concrete Institute, 2005

Cited by

  1. A Study on the Leachate Characteristics of Heavy Metals from MSW Bottom Ash Solidified with Stabilizing Reagents vol.26, pp.6, 2015, https://doi.org/10.14478/ace.2015.1099