DOI QR코드

DOI QR Code

Evaluation of Crack Width Based on the Actual Bond Stress-Slip Relationship in Structural Concrete Members

부착응력-미끌림 관계에 기반한 철근콘크리트 부재의 균열폭 산정

  • Kim, Woo (Dept. of Civil Engineering, Chonnam National University) ;
  • Lee, Ki-Yeol (Dept. of Civil Engineering, Chonnam National University) ;
  • Kim, Jang-Hyun (Dept. of Civil Engineering, Chonnam National University)
  • 김우 (전남대학교 토목공학과) ;
  • 이기열 (전남대학교 토목공학과) ;
  • 김장현 (전남대학교 토목공학과)
  • Published : 2006.02.28

Abstract

This paper presents an analytical model for evaluation of crack widths in structural concrete members. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 are employed in this study together with the assumption of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test specimens available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.

이 논문은 철근콘크리트 구조 부재의 균열폭을 산정하는 해석적 모델을 제안한 것이다. 철근과 콘크리트 경계면에서 발생하는 실제와 유사한 형태의 부착응력-미끌림 특성을 수치적으로 전개하기 위하여 균열안정화단계에서의 철근 경계면에서의 미끌림이 선형으로 분포한다고 가정하고, CEB-FIP Model Code 1990에서 제시하고 있는 부착응력-미끌림 관계에 적용하였다. 이와 같은 방법을 통하여 균열과 균열 사이에서 철근의 매입길이 방향으로 발생하는 철근과 콘크리트의 변형률 차이가 균열면으로 누적되는 양을 계산할 수 있는 평형방정식을 유도하고, 이로부터 두 재료의 축방향 변형량의 차이로부터 균열폭을 계산할 수 있는 모델을 제안하였다. 이렇게 정식화된 새로운 균열폭 모델을 기존 문헌에 발표된 여러 연구자들의 실험자료에 적용하여 그 정확성을 검증한 결과, 제안식에 의한 예측값은 현재 사용되고 있는 여러 설계기준의 균열폭 규정으로 계산한 결과에 비하여 실험값을 비교적 정확하게 예측하는 것으로 나타났다.

Keywords

References

  1. Goto, Y. and Otsuka, K., 'Studies on Internal Cracks Forrned in Concrete Around Defonned Tension Bars', ACI Structural Journal, Vol.68, No.4, April 1971, pp.244-251
  2. Leonhardt, F., Crack Control in Concrete Structures, IABSE Surveys No.S-4177, Zurich, 1977
  3. Broms, B. B., 'Crack Width and Crack Spacing in Reinforced Concrete Members', ACI Structural Journal, Vol.62, No.9, October, 1965, pp.1237-1256
  4. Chan, H. C., Cheung, Y. K., and Huang, Y. P., 'Crack Analysis of Reinforced Concrete Tension Members', ASCE Journal of Structural Engineering, Vol.18, No.8, August 1992, pp.2118-2131
  5. Gergely, P. and Lutz, L.A., Maximum Crack Width in Reinforced Concrete Flexural Members, Causes, Mechanism, and Control of Cracking in Concrete ACI Special Publication SP-20, ACI, Michigan, 1968, pp.87-117
  6. ACI Committee 318, Building Code Requirement for Structural Concrete and Commentary, ACI, Detroit, 2002
  7. European Committee for Standardization, Eurocode 2-Design of Concrete Structures, CEN, Brussels, 2002
  8. CEB-FIP, CEB-PIP Model Code 1990, Comite Euro-International Du Beton, Paris, 1991
  9. 한국콘크리트학회, 건설교통부제정 콘크리트구조설계 기준 해설, 한국콘크리트학회, 2003
  10. Balazs, G., 'Cracking Analysis Based on Slip and Bond Stresses', ACI Material Journal, Vol.90, No.4, July- August 1993. pp.340- 348
  11. Shunsheng, Y. and Jiakui, C., 'Bond Slip and Crack Width Calculations of Tension Members', ACI Structural Journal, Vol.85, No.4, July-August 1988, pp.414-422
  12. Russo, G. and Romano, F., 'Cracking Response of RC Members Subjected to Uniaxial Tension', ASCE Journal of Structural Engineering, Vol.118, No.5, May 1992, pp.1172-1190 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1172)
  13. fib, Structural Concrete - Manual Textbook Volume 2, International Federation for Structural Concrete (fib), Switzerland, 1999
  14. Beeby, A. W., 'Predicting of Crack Width in Hardened Concrete', Structural Engineer, Vol.57A, No.1, January 1979, pp.9-17
  15. Lorrain, M., Maurel, O., and Seffo, M., 'Cracking Behavior of Reinforced High-Strength Concrete Tension Ties', ACI Structural Journal, Vol.95, No. 5, September-October 1998, pp.626-635
  16. Jaccoud, J.P., Charit, H., and Farra, B., 'Cracking Behavior of HSC Structures and Practical Consequences for Design', 3'rd International Symposium on Utilization of High-Strength Concrete, CEB-FIP, Lillehanmmer, 1992, pp.225-232
  17. Nawy, E. G., 'Crack Control in Reinforced Concrete Structures', ACI Structural Journal, Vol.65, No.10, October 1968, pp.825-836
  18. fib Task Group Bond Model, 'Bond of Reinforcement in Concrete', State-of-Art Report Bulletin 10, International Federation for Structural Concrete(fib), Switzerland, 2000
  19. Huang, Z., Engstrom, B., and Magnusson, J., 'Experimental Investigation of the Bond and Anchorage Behavior of Deformed Bar in High Strength Concrete', Fourth International Symposium on the Utilization of High Strength/ Performance Concrete, Paris, 1996, PP.1115-1124
  20. Jiang, D. H., Shah, S. P., and Andonian, A. T., 'Study of the Transfer of Tensile Forces by Bond', ACI Structural Journal, Vol.81, No.3, May-June 1984, pp.251 -259
  21. Scott, R. H. and Gill, P. A. T., 'Short-Term Distributions of Strain and Bond Stress along Tension Reinforcement', Structural Engineer, Vol. 65B, No.2, June 1987, pp.39-43
  22. Yannopoulos, P. J., 'Variation of Concrete Crack Width Through the Concrete Cover to Reinforcement', Magazine of Concrete Research, Vol.41, No.147, June 1989, pp.63-68 https://doi.org/10.1680/macr.1989.41.147.63
  23. Bilal, S. H. and Mohamad, H. H., 'Effect of Fiber Reinforcement on Bond Strength of Tension Lap Splices in High-Strength Concrete', ACI Structural Journal, Vol.98, No.5, September-October 2001, pp.638-647
  24. 강영진, 오병환, '철근콘크리트 휨부재의 균열폭 및 균열간격의 결정', 대한토목학회 논문집, 5권 4호, 1985, pp.103-111
  25. 고원준, 박선규, '부착특성을 고려한 철근콘크리트 부재의 휨 균열폭 산정', 대한토목학회 논문집, 22권 4-A호, 2002, pp.825-835

Cited by

  1. Flexural Bond Behavior of Rebar in Ultra-High Performance Concrete Beams Considering Lap-Splice Length and Cover Depth vol.08, pp.03, 2016, https://doi.org/10.4236/eng.2016.83013