Gas Permeable Properties of Elastomer-Clay Nanocomposite Membrane

유기탄성체-Clay 나노복합재료 막의 기체투과 특성

  • Nam Sang-Yong (Department of Polymer Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Park Ji-Soon (Department of Polymer Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Rhim Ji-Won (Department of Chemical Engineering, Hannam University) ;
  • Chung Youn-Suk (Department of Chemical Engineering, Hanyang University) ;
  • Lee Young-Moo (Department of Chemical Engineering, Hanyang University)
  • 남상용 (경상대학교 고분자공학과, 공학연구원) ;
  • 박지순 (경상대학교 고분자공학과, 공학연구원) ;
  • 임지원 (한남대학교 화학공학과) ;
  • 정연석 (한양대학교 화차공학과) ;
  • 이영무 (한양대학교 화차공학과)
  • Published : 2006.06.01

Abstract

Elastomer-clay nanocomposite membranes were prepared by melt intercalation mothod with internal mixer. We are used NMR, Ionomer, SEBS (Styrene Ethylene Butadien styrene Copolymer) as elastomer, and modified clay. Gas barrier property of the elastomer-clay nanocomposites membranes were investigated by a gas permeability of $CO_2,\;O_2,\;N_2$ at room temperature. Gas permeability through the elastomer-clay nanocomposite membranes increased due to increased tortuosity made by intercalation of clay in elastomer.

일반적으로 탄성체는 특히 고무는 단일성분으로 충분한 물성과 gas barrier성을 나타내지 못하고, 카본블랙과 실리카 등 보강제를 첨가하여 사용되고 있다. 따라서 본 연구에서는 기체 투과성을 낮추기 위해 층상구조를 갖는 점토광물의 일종인 유기실리케이트와 NBR, Ionomer, SEBS (Styrene Ethylene Butadien styrene Copolymer)의 유기탄성체를 이용하여 유기탄성체-clay 나노복합재료 막을 용융법으로 제조하였다. 유기탄성체-clay 나노복합재료 막의 기체 투과 특성은 가압 기체투과장치를 이용하여 실온에서 일정 압력을 유지하며 이산화탄소($CO_2$), 산소($O_2$), 질소($N_2$)가스의 기체투과도를 측정하였다. 유기탄성체-clay 나노복합재료 막은 clay자체의 도입과 층간거리의 확대로 기체분자의 tortuosity를 증가시켜서 기체투과도를 저하시키는 것을 확인하였다.

Keywords

References

  1. W. J. Koros and R. Mahajan, 'Pushing the limits on possibilities for large scale gas separation: which strategies-', J. Membr. Sci., 175, 181 (2000) https://doi.org/10.1016/S0376-7388(00)00418-X
  2. W. J. Koros and G. K. Fleming, 'Membrane-based gas separation', J. Membr. Sci., 83, 80 (1993)
  3. C. J. Cornelius and E. Marand, 'Hybrid silica-polyimide composite membranes: gas transport properties', J. Membr. Sci., 202, 97 (2002) https://doi.org/10.1016/S0376-7388(01)00734-7
  4. E. J. Moon, J. E. Yoo, H. W. Choi, and C. K. Kim, 'Gas transport and thermodynamic properties of PMMA/PVME blends containing PS-b-PMMA as a compatibilizer', J. Membr. Sci., 204, 283 (2002) https://doi.org/10.1016/S0376-7388(02)00051-0
  5. T. Naylar, Permeation properties in handbook of comprehensive polymer science, vol. 2, I and 643 edn, UK:Pergamon Press (1998)
  6. V. Compan, D. Zanuy, A. Andrio, M. Morillo, C. Aleman, and S. M. Guerra, 'Permeation Properties of the Stereoregular Nylon-3 Analogue, $Poly({\alpha}-hexyl{\beta}-L-aspartate)$', Macromolecules., 35, 4521 (2001) https://doi.org/10.1021/ma010321a
  7. M. E. Arnold, K. Nagai, B. D. Freeman, R. J. Spontak, D. E. Betts, and J. M. Desimone, 'Gas Permeation Properties of Poly(1,1'-dihydroperfluorooctyl acrylate), Poly(1,1'-dihydroperfluorooctyl meth acrylate), and Poly(styrene)-b-poly(1,1'-dihydroperfluorooctyl acrylate) Block Copolymers', Macromolecules., 34, 5611 (2001) https://doi.org/10.1021/ma010355i
  8. V. Barbi, S. S. Funari, R. Gehrke, N. Scharnagl, and N. Stribeck, 'SAXS and the Gas Transport in Polyether-block-polyamide Copolymer Membranes', Macromolecules., 36, 749 (2003) https://doi.org/10.1021/ma0213403
  9. M. R. Pixton and D. R. Paul, 'Gas Transport Properties of Polyarylates: Substituent Size and Symmetry Effects', Macromolecules., 28, 8277 (1995) https://doi.org/10.1021/ma00128a043
  10. C. L. Aitken, W. J. Koros, and D. R. Paul, 'Gas transport properties of biphenol polysulfones', Macromolecules., 25, 3651 (1992) https://doi.org/10.1021/ma00040a008
  11. P. Tiemblo, J. Guzman, E. Riande, C. Mijangos, and H. Reinecke, 'The Gas Transport Properties of PVC Functionalized with Mercapto Pyridine Groups', Macromolecules., 35, 420 (2002) https://doi.org/10.1021/ma010656s
  12. P. W. Neilson and G. F. Xu, 'Gas Permeation Studies of Silylated Derivatives of Poly(meth-ylphenylphosphazene)', Macromolecules., 29, 3457 (1996) https://doi.org/10.1021/ma950788j
  13. U. S. Aithal, R. H. Balundgi, T. M. Aminabhavi, and S. S. Shukla, Polym-Plast. Technol. Eng., 30(4), 299 (1991) https://doi.org/10.1080/03602559108020999
  14. G. J. van Amerongen, J. Appl. Phys., 17, 972 (1946) https://doi.org/10.1063/1.1707667
  15. T. Johnson and S. Thomas, 'Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends', Polymer., 40, 3223 (1999) https://doi.org/10.1016/S0032-3861(98)00528-X
  16. A. N. Gent, 'Engineering with Rubber: How to design rubber component', Hanser (1992)
  17. W. G. Hwang and K. H. Wei, 'Mechanical, thermal, and barrier properties of NBR/Organosilicate nanocomposites', Polymer Eng. Sci., 44, 11 (2004)
  18. S. S. Ray and M. Okamoto, ' Polymer/layered silicate nanocomposites: a review from preparation to processing', Prog. Polym. Sci., 28, 1539-1641 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  19. A. Okada, M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi, and O. Kamigaito, 'Synthesis and properties of nylon-6/c1ay hybrids', In: Schaefer DW, Mark JE, editors., 'Polymer based molecular composites. MRS Symposium Proceeding', Pittsburgh., 171, 45-50 (1990)
  20. L. M. Liu, Z. N. Qi, and X. G. Zhu, 'Studies on nylon-6 clay nanocomposites by melt-intercalation process', J. Appl. Polym. Sci., 71, 1133-1138 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1133::AID-APP11>3.0.CO;2-N
  21. S. Joly, G. Garnaud, R. Ollitrault, L. Bokobza, and J. E. Mark, 'Organically Modified Layered Silicates as Reinforcing Fillers for Natural Rubber', Chem. Mater., 14, 4202 (2002) https://doi.org/10.1021/cm020093e
  22. M. Lopez-Manchado, B. Herrero, and M. Arroyo, 'Preparation and characterization of organoclay nanocomposites based on natural rubber', Polym. Int., 52, 1070 (2003) https://doi.org/10.1002/pi.1161
  23. Y. T. Vu, J. K. Mark, L. H. Pham, and M. Engelhardt, 'Clay nanolayer reinforcement of cis-1,4-polyisoprene and epoxidized natural rubber', J. Appl. Polym. Sci., 82, 1391 (2001) https://doi.org/10.1002/app.1976
  24. S. Varghese, J. Karger-Kocsis, and K. G. Gatos, 'Melt compounded epoxidized natural rubber/layered silicate nanocomposites: structure-properties relationships', Polymer, 44, 3977 (2003) https://doi.org/10.1016/S0032-3861(03)00358-6
  25. A. Mousa and J. Karger-Kocsis, 'Rheological and Thermodynamical Behavior of Styrene/Butadiene Rubber-Organoclay Nanocomposites', Macromol. Mater. Eng., 286, 260 (2001) https://doi.org/10.1002/1439-2054(20010401)286:4<260::AID-MAME260>3.0.CO;2-X
  26. F. Schon, R. Thomann, and W. Gronski, 'Shear controlled morphology of rubber/organoclay nanocomposites and dynamic mechanical analysis', Macromol. Symp., 189, 105 (2002)
  27. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, 'Preparation and Mechanical Properties of Polypropylene-Clay Hybrids', Macromolecules, 30, 6333 (1997) https://doi.org/10.1021/ma961786h
  28. A. Usuki, A. Tukigase, and M. Kato, 'Preparation and properties of EPDM - clay hybrids', Polymer, 43, 2185 (2002) https://doi.org/10.1016/S0032-3861(02)00013-7
  29. W. G. Hwang, K. H. Wei, and C. M. Wu, 'Preparation and mechanical properties of nitrile butadiene rubber/silicate nanocomposites', Polymer, 45, 5729 (2004) https://doi.org/10.1016/j.polymer.2004.05.040
  30. J. T Kim, T. S. Oh, and D. H. Lee, 'Morphology and rheological properties of nanocomposites based on nitrile rubber and organophilic layered silicates', Polym. Int., 52, 1203 (2003) https://doi.org/10.1002/pi.1249
  31. C. W. Nah, H. J. Ryu, W. K. Kim, and S. S. Choi, 'Barrier property of clay/Acrylonitrile-butadiene copolymer nanocomposite', Polym. for Adv. Technol., 13, 649 (2002) https://doi.org/10.1002/pat.325
  32. Y. I. Tien and K. H. Wei, 'High-Tensile-Property Layered Silicates/Polyurethane Nanocomposites by Using Reactive Silicates as Pseudo Chain Extenders', Macromolecules, 34, 9045 (2001) https://doi.org/10.1021/ma010551p
  33. M. Berta, C. Lindsay, G. Pans, G. Camino, 'Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites', Polymer Degradation and Stability, 91, 1179-1191 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.05.027
  34. P. C. Lebaron and T. J. Pinnavaia, 'Clay Nanolayer Reinforcement of a Silicone Elastomer', Chem. Mater., 13, 3760 (2001) https://doi.org/10.1021/cm010982m
  35. L. N. Sridhar, R. K. Gupta, and M. Bhardwaj, 'Barrier Properties of polymer nanocompoiste', American Chemical Society (2006)
  36. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, 'Synthesis and properties of polyimide-clay hybrid', J. Polym. Sci. Part A: Polym. Chem., 31, 2493-2498 (1993) https://doi.org/10.1002/pola.1993.080311009
  37. J. S. Park, J. W. Rhim, and S. Y. Nam, 'Preparation and Gas Barrier Properties of Chitosan/Clay Nanocomposite Film', Membrane Journal., 15, 247 (2005)
  38. K. Uano, A. Usuki, and A. Okada, 'Synthesis and properties of polyimide-clay hybrid films', J. Polym. Sci. Part A: Polym. Chem., 35, 2289-2294 (1997) https://doi.org/10.1002/(SICI)1099-0518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9
  39. C. J. Orme, J. R. Klaehn, M. K. Harrup, T. A. Luther, E. S. Peterson, and F. F. Stewart, 'Gas permeability in rubbery polyphosphazene membranes', J. Membr. Sci. (2006)
  40. T. Al-Ati, and J. H. Hotchkiss, 'Effect of the thermal treatment of Ionomer films on permeability and permselectivity', J. Appl. Polym. Sci., 86, 2811 (2002) https://doi.org/10.1002/app.11262
  41. G. Mensitieri, M. A. Del Nobile, and C. Manfredi, 'Thermal Effects on the Gas Transmission Properties of Ionomers Used in Food Packaging Applications', Packaging Tech. Sci., 9, 228 (1996)
  42. R. K. Bharadwaj, 'Modeling the barrier properties of polymer-layered silicate nanocomposites', Macromolecules., 34, 1989-1992 (2001)
  43. L. Nielsen, 'Platelet particles enhance barrier of polymers by forming tortuous path', J. Macromol. Sci. Chem., A1(5), 929-942 (1967)
  44. Y. J. Kim and S. Y. Nam, 'Preparation and properteies of NBR-Clay hybrid membranes', Membranes Journal., 14, 132-141 (2004)