Silane 화합물을 이용한 역삼투막 활성층의 표면개질

Surface Modification of Reverse Osmosis Membrane Skin Layer by Silane Compound

  • 이용택 (경희대학교 환경.응용화학대학) ;
  • 신동호 (경희대학교 환경.응용화학대학) ;
  • 김노원 (동의대학교 공과대학 환경공학과)
  • Lee Yong-Taek (College of Environment and Applied Chemistry Chemical Engineering & Advanced Materials Engineering, Kyung Hee University) ;
  • Shin Dong-Ho (College of Environment and Applied Chemistry Chemical Engineering & Advanced Materials Engineering, Kyung Hee University) ;
  • Kim No-Won (Department of Environmental Engineering Engineering College, Dongeui University)
  • 발행 : 2006.06.01

초록

방향족 폴리아미드 역삼투 복합 박막에 트리알콕시알킬 실란 화합물을 안정적으로 정착시켜 내염소성이 향상된 복합막을 제조하는 방법에 관하여 조사하였다. 실란 화합물의 알킬 그룹의 탄소가 1개인 methyltriethoxysilane (METES)와 8개인 octyltriethoxysilane (OCTES) 표면 개질에 사용하였다. 긴 알킬 체인을 갖는 실란(OCTES)이 정착된 멤브레인의 경우, 일반 폴리아미드 역삼투막 또는 짧은 알킬 체인을 갖는 실란(METES)에 비해 개염소성이 크게 향상됨을 알 수 있었다. 본 연구에서는 표면 분석을 통하여 OCTES 코팅막과 METES또는 상용막과의 내염소성 차이를 설명하고자 하였다. EDX 원소 분석을 통하여 실란 화합물 둘 다 폴리아미드상에 안정적으로 고정되었음을 볼 수 있었으나 표면 조도나 접촉각 분석에서는 긴 알킬 체인을 가진 OCTES가 혐수성에 큰 영향을 주고 있음을 확인할 수 있었다.

This study is concerned with preparation of chlorine resistant (CR) thin layer composite (TFC) membranes. The novel method for making CR membranes from commercially available RO membranes is based on sol-gel condensation of trialkoxyalkylsilane derivatives. The silane coupling agents used in this study have different number of alkyl carbon chain group (methyltriethoxysilane; METES and octyltriethoxysilane; OCTES). The OCTES composite membranes have a significant tolerance to chlorine compared to commercial polyamide RO membrane or METES composite membranes. The surface properties of membranes were examined to explain a significant difference of chlorine tolerance between OCTES composite membrane and the other two membranes. In this study, we tried several surface analyses to explain difference of chlorine tolerance. The element composition results of surface analysis by EDX confirmed that both silane fixed on polyamide firmly, The surface roughness and contact angle results showed long chain alkyl group of OCTES enhancing hydrophobicity considerably than METES. The hydrophobicity plays an important role in chlorine resistance of membrane.

키워드

참고문헌

  1. W. S. Winston Ho and K. K. Sirkar, 'Membrane Handbook', Chapman and Hall Pub., USA (1992)
  2. J. E. Cadotte, 'Reverse osmosis membrane', U. S. Patent, 4,259,183 (1981)
  3. Y. T. Lee and N. W. Kim, 'Reverse Osmosis Membrane with High Salt Rejection for Seawater Desalination.' J. Korean Ind. Eng. Chem., 15(4), 466 (2004)
  4. R. Singh and Rajindar, 'Polyamide polymer solution behavior nder chlorination conditions', J. Mem. Sci., 88, 285 (1994) https://doi.org/10.1016/0376-7388(94)87015-2
  5. R. Singh, 'Characteristics of a chlorine-resistant reverse osmosis membrane', Desalination, 95, 27 (1994) https://doi.org/10.1016/0011-9164(94)00004-2
  6. S. H. Jang, 'Organic-Inorganic Hybrid Materials : Sol-Gel Derived Coatings', Polymer Sci. Tech., 12(5), (2001)
  7. M. Kurihara, T. Uemura, Y. Himeshima, K. Ueno, and R. Bairinji, 'Development of crosslinked aromatic polyamide composite reverse osmosis membrane', J. Chem. Soc. Jpn., 2, 97 (1994)
  8. J. Glater, S. K. Hong, and M. Elimelech, 'The search for a chlorine-resistant reverse osmosis membrane', Desalination, 95, 325 (1994) https://doi.org/10.1016/0011-9164(94)00068-9
  9. R. Singh, 'Characteristics of a chlorine-resistant reverse osmosis membrane', Desalination, 95, 27-37 (1994) https://doi.org/10.1016/0011-9164(94)00004-2
  10. Julius Glater, Seung-Kwan Hong, and Menachem Elimelech, 'The search for a chlorine-resistant reverse osmosis membrane', Desalination, 95, 325 (1994) https://doi.org/10.1016/0011-9164(94)00068-9
  11. Y. G. Kim, N. W. Kim, and Y. T. Lee, 'A study on Chlorine Resistance Improvement of Reverse Osmosis Membrane by Surface Modification', Mem. J., 15(4), 320 (2005)
  12. S. Belfer, Y. Purinson, R. Fainshtein, Y. Radchenko, and O. Kedem, 'Surface modification of commercial composite polyamide reverse osmosis membranes', J. Mem. Sci., 139, 175 (1998) https://doi.org/10.1016/S0376-7388(97)00248-2
  13. V. Freger., J. Gilron, and S. Belfer. 'TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study', J. Mem. Sci., 209, 283 (2002) https://doi.org/10.1016/S0376-7388(02)00356-3
  14. M. Kurihara, T. Uemura, Y. Himeshima, K. Ueno, and R. Bairinji, 'Development of crosslinked aromatic polyamide composite reverse osmosis membrane', J. Chem. Soc. Jpn. 2, 97 (1994)
  15. Y. G. Kim, N. W. Kim, and Y. T. Lee, 'Interpretation of Permeation Characteristics and Membrane Transport Models Through Polyamide Reverse Osmosis Membrane', Mem. J., 14(1), 75, (2004)
  16. W. S. Yun, 'Scanning Probe Microscopy and Polymer', Polymer Sci. Tech., 15(3), 363 (2004)
  17. K. J. Ihn, 'Study of Polymeric Materials Using AFM', Polymer Sci. Tech., 7(3), 332 (1996)
  18. Wiesendanger, R., Guntherodt, H.-J, Springer, Wiesendanger, R., Guntherodt, H.-J, and Baumeister, W. 'Scanning Tunneling Microscopy II', Springer-Berlag, Berlin (1993)