DOI QR코드

DOI QR Code

Temperature and Loading-Rate Dependence on the Mechanical Behavior of Carbon Nanotubes

탄소나노튜브의 역학적 거동에 관한 온도와 하중부하속도의 의존성

  • 정병우 (한양대학교 대학원 기계설계과) ;
  • 임장근 (한양대학교 기계설계과)
  • Published : 2006.07.01

Abstract

The temperature and loading-rate dependence on the mechanical behavior of single-walled carbon nanotubes under axial compression and torsion is examined with classical molecular dynamics simulation. The critical buckling is found to depend on the temperature and loading-rate. The yielding under torsion is also found to depend on the temperature and loading-rate. But it is shown that the compression and torsional stiffness are independent of the varied temperatures and loading-rates.

Keywords

References

  1. Iijima, S., 1991, 'Helical Microtubules of Graphite Carbon,' Nature, Vol. 354, pp. 56-58 https://doi.org/10.1038/354056a0
  2. Yakobson B. I., Brabec C. J., and Bernhole J., 1996, 'Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response,' Phys. Rev. Lett., Vol. 76, pp. 2511-2514 https://doi.org/10.1103/PhysRevLett.76.2511
  3. Yakobson B. I., Campbell M. P., Brabec C. J., and Bernhole J., 1997, 'High Strain Rate Fracture and C-chain Unraveling in Carbon Nanotubes,' Computer Mater. Science., Vol. 8, pp. 341-348 https://doi.org/10.1016/S0927-0256(97)00047-5
  4. Lu, J. P., 1997, 'Elastic Properties of Carbon Nanotubes and Nanoropes,' Phys. Rev. Lett., Vol. 79, pp. 1297-1300 https://doi.org/10.1103/PhysRevLett.79.1297
  5. Pantano, A., Boyce, M. C., Parks, D. M., 2004, 'Mechanics of Axial Compression of Single and Multi-Wall Carbon Nanotubes,' J. of Engineering Materials and Technology., Vol. 126, pp. 279-284 https://doi.org/10.1115/1.1752926
  6. Kim, C. I., Yang, S. H., and Kim, Y. S., 2003, ?'Computer Simulation of Nano Material Behavior using Molecular Dynamics,' Kor. Soc. Tech. Plasticity, Vol. 12-3, pp. 171-183 https://doi.org/10.5228/KSPP.2003.12.3.171
  7. Wei, C., Cho, K., Srivastava, D., 2003, 'Tensile Strength of Carbon Nanotubes under Realistic Temperature and Strain Rate,' Phys. Rev. B., Vol. 67, pp. 115407-115413 https://doi.org/10.1103/PhysRevB.67.115407
  8. Ozaki, T., Iwasa, Y., Mitani, T., 2000, 'Stiffness of Single-Walled Carbon Nanotubes under Large Strain,' Phys. Rev. Lett., Vol. 84, No. 8, pp. 1712-1715 https://doi.org/10.1103/PhysRevLett.84.1712
  9. Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., Sinnott, S. B., 2002, 'A Second-Generation Reactive Empirical Bond Order (REBa) Potential Energy Expression For Hydrocarbons,' J. Phys.: Condens Matter., Vol. ?14, No. 4, pp. 783-802 https://doi.org/10.1088/0953-8984/14/4/312
  10. Mylvaganam K., Zhang L. C., 2004, 'Important Issues in Molecular Dynamics Simulation for Characterising the Mechanical Properties of Carbon Nanotubes,' Carbon, Vol. 42, pp. 2025-2032 https://doi.org/10.1016/j.carbon.2004.04.004
  11. Heo S. J., Sinnott S. B., 2006, 'Effect of Temperature Control -on the Mechanical Properties of Carbon Nanotubes,' J. of Nanoscience and Nonotechnology, (in press)
  12. Trotter H., Phillips R., Ni B., Hu Y. H., Sinnott S. B., Mikulski P. T., Harrison J. A., 2005, 'Effect of Filling on the Compressibility of Carbon Nanotubes: Predictions from Molecular Dynamics,' J. of Nanoscience and Nonotechnology, Vol. 5, No. 4, pp. 536-541 https://doi.org/10.1166/jnn.2005.081