DOI QR코드

DOI QR Code

Quasi-Velocity-Matching물 이용한 60 GHz 광캐리어 발생기

60 GHz Optical Carrier Generator using Quasi-Velocity-Matching Technique

  • 김우경 (전자부품연구원 나노바이오센터) ;
  • 양우석 (전자부품연구원 나노바이오센터) ;
  • 이형만 (전자부품연구원 나노바이오센터) ;
  • 이한영 (전자부품연구원 나노바이오센터) ;
  • 정우진 (서울시립대학교 전자전기컴퓨터공학부) ;
  • 권순우 (한국항공대학교 항공재료공학과)
  • Kim, W.K. (NANO Bio Research Center, Korea Electronics Technology Institude) ;
  • Yang, W.S. (NANO Bio Research Center, Korea Electronics Technology Institude) ;
  • Lee, H.M. (NANO Bio Research Center, Korea Electronics Technology Institude) ;
  • Lee, H.Y. (NANO Bio Research Center, Korea Electronics Technology Institude) ;
  • Jeong, W.J. (School of Electrical and Computer Engineering, University of Seoul) ;
  • Kwon, S.W. (Department of Materials Engineering, Hankuk Aviation University)
  • 발행 : 2006.04.01

초록

리튬나이오베이트 기판의 분극 반전 기술을 이용하여 300Hz 대역 광변조기를 제작하였고 60 GHz 광캐리어 발생기로 응용하였다. 주기적인 분극반전은 도파광과 RF사이의 QVM(Quasi-Velocity-Matching)을 유발하여 대역변조를 가능하게 하였다. 제작된 광변조기는 30.3 GHz에서 최대 변조효율을 보였으며, 3 dB 변조 대역폭은 약 5.1 GHz로 측정되었다. DSB-SC(Double Sideband Suppressed Carrier) 측정 실험을 통해 입사된 광 주파수로부터 30 GHz 간격으로 USB(Upper Sideband)와 LSB(Lower Sideband)를 발생시켰으며 입사광의 스펙트럼은 발생된 USB 혹은 LSB에 비해 28 dB정도 억제됨으로써, 30GHz 대역 광변조기가 60 GHz 광캐리어 발생기로 응용될 수 있음을 보였다.

A novel 60GHz optical carrier generator with a polarization domain-inverted structure is suggested and is demonstrated. The two arms of the Mach-Zehnder optical waveguide are periodically poled for quasi-phase velocity matching between the optical wave at 1550nm and the RF wave at 30 GHz. The center frequency of band-pass modulation and the 3 dB bandwidth of the fabricated modulator were measured to be 30.3 GHz and 5.1 GHz, respectively. Sub-carriers with the frequency difference of 60GHz waeregenerated under appropriate DC biac voltage application while the carrier was suppressed to lead to the power ratio between the modulated sub-carrier and the suppressed fundamental carrier of 28 dB, which proves that double sideband- suppressed carrier(DSB-SC) operation can be realized by the suggested single device.

키워드

참고문헌

  1. W. Wang, R. Tavlykaev, and R. V. Ramaswamy, 'Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with domain reversal,' IEEE Photonics Tech. Lett., vol. 9, no. 5, pp. 610-612, May 1997 https://doi.org/10.1109/68.588147
  2. Y. Lu, M. Xiao, and G. J. Salamo, 'Application of periodically-poled $LiNbO_3$ for wide-bandwidth high-frequency electro-optic modulator,' Proceedings of the conference on Lasers and Electro-Optics 2001, CTul7, pp. 142-143, 2001
  3. J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, 'Optical generation of very narrow linewidth millimeter wave signals,' Electron. Lett., vol. 28, no. 25, December 1992 https://doi.org/10.1049/el:19921277
  4. T. Kuri and K. Kitayama, 'Optical heterodyne detection of millimeter-wave-band radio-on-fiber signals with a remote dual-mode local light source,' IEEE Trans. on Microwave Theory and Tech., vol. 49, no. 10, pp. 2025-2029, October 2001 https://doi.org/10.1109/22.954825
  5. Y. K. Seo, C. S. Choi, and W. Y. Choi, 'All-optical signal up-conversion for radio-on-fiber applications using crossgain modulation in semiconductor optical amplifiers,' IEEE Photonics Tech. Lett., vol. 14, no. 10, pp. 1448-1950, October 2002 https://doi.org/10.1109/LPT.2002.801823
  6. H. J. Song, J. S. Lee, and J. I. Song, 'All-optical frequency up-conversion of radio over fibre signal with optical heterodyne detection,' Electron. Lett., vol. 40, no. 5, March 2004
  7. H. Murata, K. Kaneda, Y. Okamura, '38 GHz optical singlesideband modulation by using guided-wave electrooptic modulator with periodic polarization reversal,' Proceedings of the conference on Lasers and Electro-Optics 2004, CTh-T10, pp. 293-295, May 2004
  8. H. Murata and S. Yamamoto, 'Novel guided-Wave eletrooptic single-sideband modulator by using periodically domain-inverted structure in a long wavelength operation,' OFC 2003, MF53, 2003
  9. M. Izutsu and T. Sueta, 'Coupled mode analysis of light intensity modulation in dielectric waveguide,' Appl. Phys., vol. 5, pp. 307-315, January 1975 https://doi.org/10.1007/BF00928018
  10. B. Bincent, A. Boudrioua, R. Kremer, and P. Moretti, 'Second Harmonic Generation in Helium-Implanted Periodically Poled Lithium Niobate Planar Waveguides,' Opt. Commun., vol. 247, pp. 461-69, 2005 https://doi.org/10.1016/j.optcom.2004.11.079