Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings

지상원격탐사를 이용한 에어러솔 간접효과 연구

  • Kim Byung-Gon (Department of Atmospheric Environmental Sciences Kangnung National University) ;
  • Kwon Tae-Young (Department of Atmospheric Environmental Sciences Kangnung National University)
  • 김병곤 (강릉대학교 대기환경과학과) ;
  • 권태영 (강릉대학교 대기환경과학과)
  • Published : 2006.04.01

Abstract

Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

Keywords

References

  1. Ackerman, T.P. and G.M. Stokes (2003) The Atmospheric Radiation Measurement Program, Physics Today, 38-44
  2. Ackerman, A.S., O.B. Toon, D.E. Stevens, A.J. Heymsfield, V. Ramanathan, and E.J. Welton (2000) Reduction of tropical cloudiness by soot, Science 288, 1042-1047 https://doi.org/10.1126/science.288.5468.1042
  3. Albrecht, B.A. (1989) Aerosols, cloud microphysics, and fractional cloudiness, Science 245, 1227-1230 https://doi.org/10.1126/science.245.4923.1227
  4. Albrecht, B.A., C.S. Bretherton, D. Johnson, W.H. Schubert, and A.S. Frisch(1995) The Atlantic Stratocumulus Transition Experiment ASTEX. Bull. Amer. Meteor. Soc. 76, 889-904 https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2
  5. Andrews, E., P.J. Sheridan, J.A. Ogren, and R. Ferrare (2004) In-situ aerosol profiles over the Southern Great Plains cloud and radiation test bed sites: 1. aerosol optical properties, J. Geophys. Res. 109, doi:10.1029/2003JD004025
  6. Breon, F.-M., D. Tanre, and S. Generoso (2002) Aerosol effect on cloud droplet size monitored from satellite, Science 295, 834-838 https://doi.org/10.1126/science.1066434
  7. Chameides, W.L., C. Luo, R. Saylor, D. Streets, Y. Huang, M. Bergin, and F. Giorgi (2002) Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depth: Indication of indirect effect?, J. Geophys. Res 107, doi:10.1029/2000JD000208
  8. Charlson, R.J., S.E. Schwartz, J.H. Hales, R.D. Cess, J.A. Coakley Jr., J.E. Hansen, and D.J. Hofman (1992) Climate forcing by anthropogenic aerosols, Science 255, 423-430 https://doi.org/10.1126/science.255.5043.423
  9. Clothiaux, E.E., T.P. Ackerman, G.G. Mace, K.P. Moran, R.T. Marchand, M.A. Miller, and B.E. Martner (2000) Objective determination of cloud heights and radar reflectivities using a combination of active remotesensors at the ARM CART sites, J. Appl. Met. 39, 645-665 https://doi.org/10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2
  10. Feingold, G., W. Eberhard, D.E. Lane, and M. Previdi (2003) First measurements of the Twomey effect using ground-based remote sensors, Geophys. Res. Lett. 1287, doi:10.1029/2002GL01633
  11. Garrett T.J., C. Zhao, X. Dong, G.G. Mace, and P.V. Hobbs (2004) Effects of varying aerosol regimes on lowlevel Arctic stratus, Geophys. Res. Lett. 31, doi:10.1029/2004GL019928
  12. Han, Q., W.B. Rossow, J. Chou, and R.M. Welch (1998) Global variation of column droplet concentration in low-level clouds, Geophys. Res. Lett. 25, 1419-1422 https://doi.org/10.1029/98GL01095
  13. Hansen, J.E., M. Sato, and R. Ruedy (1997) Radiative forcing and climate response, J. Geophys. Res. 102, 6831-6864 https://doi.org/10.1029/96JD03436
  14. Hansen, J.E. and L.D. Travis (1974) Light-scattering in planetary atmospheres, Space Sci. Rev. 16, 527-610 https://doi.org/10.1007/BF00168069
  15. Harrison, L.C. and J.J. Michalsky (1994) Objective algorithms for the retrieval of optical depths from ground-based measurements, Appl. Optics 33, 5126-5132 https://doi.org/10.1364/AO.33.005126
  16. Harshvardhan and M.D. King (1993) Comparative accuracy of diffusive radiative properties computed using selected multiple scattering approximations, J. Atmos. Sci. 50, 247-259 https://doi.org/10.1175/1520-0469(1993)050<0247:CAODRP>2.0.CO;2
  17. Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima (2003) An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts, J. Geophys. Res. 108 (D23), 8633, doi:10.1029/2003JD003550
  18. International Panel on Climate Change (2001) Climate Change 2001: The scientific basis, Cambridge Univ. Press, New York
  19. Kiehl, J.T. and B.P. Briegleb (1993) The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science 260, 311-314 https://doi.org/10.1126/science.260.5106.311
  20. Kim, B.-G, S.E. Schwartz, M.A. Miller, and Q. Min (2003) Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. J. Geophys. Res. 108, doi:10.1029/2003JD003721
  21. Liljegren, J.C., E.E. Clothiaux, G.G. Mace, S. Kato, and X. Dong (2001) A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature, J. Geophys. Res., 106, 14485-14500 https://doi.org/10.1029/2000JD900817
  22. Min, Q. and L.C. Harrison (1996) Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP site, Geophys. Res. Lett. 23, 1641-1644 https://doi.org/10.1029/96GL01488
  23. Nakajima, T., A. Higurashi, K. Kawamoto, and J.E. Penner (2001) A possible correlation between satellitederived cloud and aerosol microphysical parameters, Geophys. Res. Lett. 28, 1171-1174 https://doi.org/10.1029/2000GL012186
  24. Radke, L.F., J.A. Coakley Jr., and M.D. King (1989) Direct and remote sensing observations of the effects of ships on clouds, Science 246, 1146-1149 https://doi.org/10.1126/science.246.4934.1146
  25. Ramanathan V. and P.J. Crutzen (2001) Asian Brown Cloud Concept paper in the web page
  26. Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowie (1998) SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere. Bull. Amer. Meteorol. Soc. 79, 2101-2114 https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
  27. Schwartz, S.E., Harshvardhan, and C.M. Benkovitz (2002) Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling, PNAS, 99, 1784-1789
  28. Sheridan, P.J., D.J. Delene, and J.A. Ogren (2001) Four year of continuous surface aerosol measurements from the Department of Energy's Atmospheric Radiation Measurement program Southern Great Plains cloud and Radiation testbed site, J. Geophys. Res. 106, 20735-20747 https://doi.org/10.1029/2001JD000785
  29. Stephens, G.L. (1984) The parameterization of radiation for numerical weather prediction and climate models, Mon. Wea. Rev. 112, 826-867 https://doi.org/10.1175/1520-0493(1984)112<0826:TPORFN>2.0.CO;2
  30. Twomey, S. (1977) The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci. 34, 1149-1152 https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
  31. Wetzel, M.A. and L.L. Stowe (1999) Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing, J. Geophys. Res. 104, 31287-31229 https://doi.org/10.1029/1999JD900922