A Study on Thermal Performances of Micro Gas Sensor with Micro Hotplate

마이크로 핫플레이트를 갖는 마이크로 가스센서의 열적성능에 관한 연구

  • 주영철 (순천향대학교 기계공학과) ;
  • 임준형 (순천향대학교 기계공학과) ;
  • 이주헌 (순천향대학교 정보기술공학부) ;
  • 김창교 (순천향대학교 정보기술공학부)
  • Published : 2006.05.01

Abstract

A micro hotplate for micro gas sensor was fabricated by MEMS technology. In order to heat up the gas sensing material to a target temperature, a micro hotplate was built on the gas sensor. The sensing material was deposited on the heater and electrodes, and did not contact with the silicon base to minimize the heat loss to the silicon base. The electric power to heat up the gas sensor was measured. The temperature distribution of micro gas sensor was analyzed by a CFD program. The predicted electric power to heat up th sensing material showed a good agreement with the measured data. The design of micro gas sensor could be modified to increase the temperature uniformity and to decrease the electric power consumption by optimizing the layout of micro hotplate and electrodes.

Keywords

References

  1. H. Meixner, J. Gerblinger, U. Lampe and Feischer, 1995, 'Thin-film gas sensors based on semiconducting metal oxides,' Sensors and Actuators B, Vol. 23, pp.119-125 https://doi.org/10.1016/0925-4005(94)01266-K
  2. V. Demarne, A. Grisel, 'An integrated low-power thin-film CO gas sensor on silicon,' Sensors and Actuators, Vol. 13, pp. 301-303, 1988 https://doi.org/10.1016/0250-6874(88)80043-X
  3. I. Sayago, J. Gutierre, L. Ares, J. I. RobIa, M. C. Horrillo, J. Getino, J. Rino and J. A. Agapito, 'The effect of additive in tin oxide on the sensitivity and selectivity to NOx and CO,' Sensors and Actuators B, Vol. 26-27, pp, 19-23, 1995 https://doi.org/10.1016/0925-4005(94)01548-1
  4. J. Wollenstein, J. A. Plaza, C. Cane, Y. Min, H. Bottner and H. L. Tuller, 'A novel single chip thin film metal oxide array,' Sensors and Actuators B, Vol. 93, pp. 350-355, 2003 https://doi.org/10.1016/S0925-4005(03)00218-1
  5. J. Cerda Belmonte, J. Puigcorbe, J. Arbiol, A. Vila, J. R. Morante, N. Sabate, I. Gracia, C. Cane, 'High-temperature low-power performing micromachined suspended micro-hotplate for gas sensing applications,' Sensors and Actuators B, to be published https://doi.org/10.1016/j.snb.2005.07.057
  6. I. Simon, N. Barsan, M. Bauer, U. Weimar, 'Micromachined metal oxide gas sensors: opportunities to improve sensor performance,' Sensors and Actuators B, Vol. 73 pp. 1-26, 2001 https://doi.org/10.1016/S0925-4005(00)00639-0
  7. A. Vergara, E. Llobet, J. Brezmes, P. Ivanov, X. Villanova, I. Gracia, C. Cane, X. Corrig, 'Optimised temperature modulation of metal oxide micro-hotplate gas sensors through multilevel pseudo random sequences,' Sensors and Actuators B, Vol. 111-112, pp. 271-280, 2005 https://doi.org/10.1016/j.snb.2005.06.039
  8. G. Kaltsas, A. G. Nassiopoulou, 'Novel C-MOS compatible silicon gas flow sensor with porous silicon thermal isolation,' Sensors and Actuators A, Vol. 76, pp. 133-138, 1999 https://doi.org/10.1016/S0924-4247(98)00370-7
  9. A. G. Nassiopoulou, G. Kaltsas, 'Porous silicon as an effective material for thermal isolation on bulk crystalline silicon,' Phys. Stat. Sol., (a) Vol. 182, pp. 307-312, 2000 https://doi.org/10.1002/1521-396X(200011)182:1<307::AID-PSSA307>3.0.CO;2-#
  10. F.P. Incropera and D.P. DeWitt, 2002, Fundamentals of Heat and Mass Transfer, 5th ed., John Wiley and Sons
  11. K.D. Hagen, 1999, Heat Transfer with Applications, Prentice Hall, pp. 337-371