나노 임프린트 기술을 이용한 폴리머 도파로 기반의 브래그 격자형 파장 필터

Polymeric Wavelength Filter Based on a Bragg Grating Using Nanoimprint Technique

  • 안세원 (LG전자기술원 소자재료연구소) ;
  • 이기동 (LG전자기술원 소자재료연구소) ;
  • 김도환 (광운대학교 전자공학과) ;
  • 진원준 (광운대학교 전자공학과) ;
  • 이상신 (광운대학교 전자공학과)
  • 발행 : 2006.05.01

초록

A polymeric waveguide-type wavelength filter based on a Bragg grating has been proposed and fabricated using the simple nanoimpring technique, for the first time to our knowledge. An ultraviolet transparent stamp with the single-mode waveguide pattern incorporating a surface-relief-type Bragg grating was specially designed selective dry-etching process. Using this stamp, the device fabrication was substantially involving just a single-step process of imprint followed by polymer spin-coating. The achieved maximum reflection was higher than 25 dB at the center wavelength of 1569 nm. And the 3-dB bandwidth was 0.8 nm for the device length of 1.5 cm.

키워드

참고문헌

  1. M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, 'Tunable wavelength filters with Bragg gratings in polymer waveguides,' Appl. Phys. Lett., vol. 73, pp, 2543-2545, 1998 https://doi.org/10.1063/1.122527
  2. M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G.Kim, 'Tunablewavelength filters with Bragg gratings in polymerwaveguides,' Appl. Phys. Lett., vol. 73, pp. 2543 - 2545, 1998 https://doi.org/10.1063/1.122527
  3. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, 'Thermooptic planar polymer Bragg grating OADM's with broad tuning range,' IEEE Photon. Technol. Lett., vol. 11, pp. 448-450, 1999 https://doi.org/10.1109/68.752544
  4. J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, 'Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene containing polymer films,' Appl, Phys, Lett., vol. 82, pp, 3823- 3825, 2003 https://doi.org/10.1063/1.1579847
  5. W. H. Wong and E. Y. B. Pun, 'Polymeric waveguide wavelength filters using electron beam direct writing,' Appl. Phys. Lett., vol. 79, pp. 3576-3578, 2001 https://doi.org/10.1063/1.1421229
  6. S. Chou, P. R. Krauss, and P. J. Renstrom, 'Nanoimprint lithography,' J. Vac. Sci, Technol. B, vol. 14, no. 6, pp. 4129 - 4133, 1996 https://doi.org/10.1116/1.588605
  7. M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S. V. Sreenivasan, J. Hollenhorst, and C. G. Willson, 'Step and flash imprint lithography for sub 100 nm patterning,' Proc. SPIE, vol. 3997, pp. 453 - 463, 2000 https://doi.org/10.1117/12.390082
  8. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, 'Fabrication of sub wavelength aluminum wire grating using nanoimprint lithography and reactive ion etching,' Microelecton. Eng., vol. 78 - 79, pp. 314 - 318, 2005 https://doi.org/10.1016/j.mee.2004.12.040
  9. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon,and S. Y. Chou, 'Fabrication of 5 nm linewidth and 14 nm pitch features by nanoirnprint lithography,' Appl. Phys. Lett., vol. 84, pp. 5299 - 5301, 2004 https://doi.org/10.1063/1.1766071
  10. D. H. Kim, J. G .. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, 'Polymeric Microring Resonator Using Nanoimprint Technique Based on a Stamp Incorporating a Smoothing buffer layer,' IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2352-2354. 2005 https://doi.org/10.1109/LPT.2005.857606