DOI QR코드

DOI QR Code

Uptake and Excretion of Dissolved Organic Phosphorus by Two Toxic Dinoflagellates, Alexandrium tamarense Lebour (Balech) and Gymnodinium catenatum Graham

  • Oh Seok-Jin (Division of Bioresource and Bioenvironmental Science, Graduate School, Kyushu University) ;
  • Yamamoto Tamiji (Faculty of Applied Biological Science, Hiroshima University) ;
  • Yoon Yang-Ho (Faculty of Marine Technology, College of Ocean Science and Technology, Chonnam National University)
  • Published : 2006.03.01

Abstract

We performed experiments on the uptake and excretion of dissolved organic phosphorus (DOP) using two toxic dinoflagellates, Alexandrium tamarense Lebour (Balech) and Gymnodinium catenatum Graham, isolated from Hiroshima Bay, Japan. ATP (adenosine triphosphate), UMP (uridine-5-monophosphate), G-6-P (glucose-6-phosphate) and Glycero-P (glycerophosphate) were used as DOP sources in preliminary uptake experiments. ATP was selected as the DOP species for the short-tenn uptake experiment because preliminary experiments showed it to be the DOP source used by both species. Although the $K_s$ values of A. tamarense and G. catenatum (5.63 and $7.61{\mu}M$, respectively) obtained from the short-term experiments for ATP were only slightly higher than those reported for dissolved inorganic phosphorus (DIP), the ${\rho}_{max}$ values (5.04 pmol/cell/h and 13.4 pmol/cell/h, respectively) were much higher. The DOP excretion rate in batch-culture experiments was estimated at 0.084 pmol/cell/h for A. tamarense and 0.012 pmol/cell/h for G. catenatum, accounting for about 30% and 25%, respectively, of the assimilated phosphorus. Our results suggest that the DIP-depleted conditions of Hiroshima Bay favor these two species by supporting their ability to use DOP.

Keywords

References

  1. Abe, H. 1985. Ouyo Sugaku Nyumon, Baifu Kan, Tokyo, 215pp
  2. Beusekom, J.E.E. and U.H. Brockmann. 1998. Transformation of phosphorus in the Elbe estuary. Estuaries, 21, 518-526 https://doi.org/10.2307/1353291
  3. Bjorkman, K. and D.M. Karl. 1994. Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Mar. Ecol. Prog. Ser., 111, 265-273 https://doi.org/10.3354/meps111265
  4. Cembella, A.D., N.J. Antia, and P.J. Harrison. 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part 1. CRC Critic. Rev. Microbiol., 10, 317-391
  5. Clark, L.L., E.D. Ingall and R. Benner. 1998. Marine phosphorus is selectively remineralized. Nature, 393, 426 https://doi.org/10.1038/30881
  6. Doblin, M.A., S.I. Blackburn and G.M. Hallegreff. 1999. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J. Exp. Mar. Biol. Ecol., 236, 33-47 https://doi.org/10.1016/S0022-0981(98)00193-2
  7. Egge, J.K. 1998. Are diatoms poor competitors at low phosphate concentrations? J. Mar. Sys., 16, 191-198 https://doi.org/10.1016/S0924-7963(97)00113-9
  8. Francko, D.A. and R.G. Wetzel. 1982. The isolation of cyclic adenosine 3':5'-monophosphate (cAMP) from lakes of differing trophic status: Correlation with planktonic metabolic variables. Limnol. Oceanogr., 27, 27-38 https://doi.org/10.4319/lo.1982.27.1.0027
  9. Francois, M. and M. Morel. 1987. Kinetics of nutrient uptake and growth in phytoplankton. J. Phycol., 23, 137-150
  10. Guillard, R.R.L. and P.E. Hargraves. 1993. Strichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 32, 234-236 https://doi.org/10.2216/i0031-8884-32-3-234.1
  11. Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8, 229-239 https://doi.org/10.1139/m62-029
  12. Hada, Y. 1967. Protozoan plankton of the inland sea, Setonaikai. I. The mastigophora. Bull. Suzugamine Woman's Coll., Nat. Sci., 13, 1-26
  13. Harrison, P.J., J.S. Parslow and H.L. Conway. 1989. Determination of nutrient uptake kinetic parameters: a comparison of methods. Mar. Ecol. Prog. Ser. 52, 301-312 https://doi.org/10.3354/meps052301
  14. Healy, F.P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microbiol. Ecol., 5, 281-286 https://doi.org/10.1007/BF02020335
  15. Hodson, R.E., O. Holm-Hansen and F. Azam. 1976. Improved methodology for ATP determination in marine environments. Mar. Biol., 34, 143-149 https://doi.org/10.1007/BF00390756
  16. Hodson, R.E., A.E. Maccubbin and L.R. Pomeroy. 1981. Dissolved adenosine triphosphate utilization by free-living and attached bacterioplankton. Mar. Biol., 64, 43-51 https://doi.org/10.1007/BF00394079
  17. Jackson, G.A. and P.M. Williams. 1985. Important of dissolved organic nitrogen and phosphorus to biological nutrient cycling. Deep-Sea Res., 32, 223-235 https://doi.org/10.1016/0198-0149(85)90030-5
  18. Keller, M.D. R.C. Selvin, W. Claus and R.R.L. Guillard. 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23, 633-638 https://doi.org/10.1111/j.1529-8817.1987.tb04217.x
  19. Kolowith, L.C., E.D. Ingall and R. Benner. 2001. Composition and cycling of marine organic phosphorus. Limnol. Oceanogr., 46, 309-320 https://doi.org/10.4319/lo.2001.46.2.0309
  20. Koroleff, F. 1983. Determination of phosphorus. In: Methods of Sea Water Analysis. Grasshoff, K., M. Ehrhardt and K. Kremling, eds., Verlag Chemie, Weinheim, 162-173
  21. Kuenzler, E.J. 1970. Dissolved organic phosphorus excretion by marine phytoplankton. J. Phycol., 6, 7-13
  22. Lepo J.E. and O. Wyss. 1974. Depression of nitrogenase in Azotobacter. Biochem. Biophys. Res. Commun., 60, 76-80 https://doi.org/10.1016/0006-291X(74)90174-0
  23. Monaghan, E.J. and K.C. Ruttenberg. 1999. Dissolved organic phosphorus in the coastal ocean: Reassessment of available methods and seasonal phosphorus profiles from the Eel River Shelf. Limnol. Oceanogr., 44, 1702-1714 https://doi.org/10.4319/lo.1999.44.7.1702
  24. Oh S.J., T. Yamamoto, Y. Kataoka, O. Matsuda, Y. Matsuyama and Y. Kotani. 2002. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates: Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish. Sci. 68: 416-424 https://doi.org/10.1046/j.1444-2906.2002.00440.x
  25. Oh S.J. and Y.H. Yoon. 2004. Effects of water temperature, salinity and irradiance on the growth of the toxic dinoflagellate, Gymnodinium catenatum (Graham) isolated from Yeosuhae. Algae 19, 293-301 https://doi.org/10.4490/ALGAE.2004.19.4.293
  26. Oh S.J., Y. Matsuyama T. Yamamoto, M. Nakajima., H. Takatsuzi and K. Hujisawa. 2005. Recent developments and causes of harmful dinoflagellate blooms in the Seto Inland Sea - Ecological importance of dissolved organic phosphorus (DOP). Bull. Coast. Oceanogr., 43, 85-95
  27. Pomeroy, L.R., H.M. Mathews and H.S. Min. 1963. Excretion of phosphate and soluble organic phosphorus compounds by zooplankton. Limnol. Oceanogr., 8, 50-55 https://doi.org/10.4319/lo.1963.8.1.0050
  28. Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  29. Provasoli, L., K. Shiraishi and J.R. Lance. 1959. Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N.Y. Acad. Sci., 77, 250-261 https://doi.org/10.1111/j.1749-6632.1959.tb36905.x
  30. Shan, Y, I.D. Mckelvie and B.T. Hart. 1994. Determination of alkaline phosphatase-hydrolyzable phosphorus in natural water systems by enzymatic flow injection. Limnol. Oceanogr., 39, 1993-2000 https://doi.org/10.4319/lo.1994.39.8.1993
  31. Sharp, J.H. 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it. Limnol. Oceanogr., 22, 381-399 https://doi.org/10.4319/lo.1977.22.3.0381
  32. Strickland, J.D.H. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd ed. Bull. Fish. Res. Bd Canada, 167, 1-310
  33. Suzumura, M. and K. Ishikawa. 1998. Characterization of dissolved organic phosphorus in coastal seawater using ultrafiltration and phosphohydrolytic enzymes. Limnol. Oceanogr., 43, 1553-1564 https://doi.org/10.4319/lo.1998.43.7.1553
  34. Yamaguchi, M. 1999. Growth physiology of Heterocapsa circularisquama. Bull. Plankton Soc. Jap., 46, 171-172
  35. Yamaguchi, M. and S. Itakura. 1999. Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures of the noxious red tide dinoflagellate Gymnodinium mikimotoi. Fish. Sci., 65, 367-373 https://doi.org/10.2331/fishsci.65.367
  36. Yamamoto, T. and K. Tarutani. 1997. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Japan. Jap. J. Phycol., 45, 95-101
  37. Yamamoto, T. and K. Tarutani. 1999. Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seto Inland Sea, Japan. Phycol. Res., 47, 27-32 https://doi.org/10.1111/j.1440-1835.1999.tb00280.x
  38. Yamamoto, T., T. Hashimoto, K. Tsuji, O. Matsuda and K. Tarutani. 2002a. Spatial and temporal variations of biophilic elements in Hiroshima Bay, Japan, during 1991-2000, with special reference to the deviation of phytoplanktonic C : N : P ratio from the redfield ratio. Bull. Coast. Oceanogr., 39, 163-169
  39. Yamamoto, T., S.J. Oh and Y. Kataoka. 2002b. Effect of temperature, salinity and irradiance on the growth of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae) isolated from Hiroshima Bay, Japan. Fish. Sci.,. 68, 356-363 https://doi.org/10.1046/j.1444-2906.2002.00433.x
  40. Yamamoto, T., T. Seike, T. Hashimoto and K. Tarutani. 2002c. Modelling the population dynamics of the toxic dinoflagellate Alexandrium tamarense in Hiroshima Bay, Japan. J. Plankton Res. 24, 33-37 https://doi.org/10.1093/plankt/24.1.33
  41. Yamamoto, T., S.J. Oh and U. Kataoka. 2004. Growth and uptake kinetics for nitrate, ammonia and phosphate by the toxic dinoflagellate Gymnodinium catenatum isolated from Hiroshima Bay, Japan. Fish Sci., 45, 108-115

Cited by

  1. 수치모델을 이용한 와편모조류 Alexandrium tamarense, Gymnodinium catenatum 및 규조류 Skeletonema costatum의 종간 경쟁에 미치는 용존태 유기인의 영향 vol.40, pp.1, 2007, https://doi.org/10.5657/kfas.2007.40.1.039
  2. 저질 환경 개선을 위한 Nitzschia sp.의 영양염 흡수 동력학 vol.41, pp.4, 2006, https://doi.org/10.5657/kfas.2008.41.4.301