DOI QR코드

DOI QR Code

Germination Dependency of Antioxidative Activities in Brown Rice

현미의 발아정도에 의한 항산화활성의 변화

  • Kang, Bo-Ra (Dept. of Food Science and Technology, Seoul National University of Technology) ;
  • Park, Mi-Jung (Dept. of Visual Optics, Seoul National University of Technology) ;
  • Lee, Heum-Sook (Dept. of Food Science and Technology, Seoul National University of Technology)
  • 강보라 (서울산업대학교 식품공학과) ;
  • 박미정 (서울산업대학교 안경광학과) ;
  • 이흠숙 (서울산업대학교 식품공학과)
  • Published : 2006.04.01

Abstract

The change of antioxidative character by germination of brown rice was evaluated. From the total methanolic extract of brown rice, 2.5 mm-germinated brown rice, and 5 mm-germinated brown rice, SOD-like activity and nitrite scavenging ability were identified as antioxidative character. SOD-like activities and nitrite scavenging abilities of all samples were changed dose-dependently and germination-dependently. After successive partitioning with hexane, ethyl acetate (EtOAc) and water, each fraction was tested for these activities. SOD-like activities of all fractions were increased by germination, and especially hexane fraction and EtOAc fraction of 5 mm-germinated brown rice had more strong activities than 50 ppm vitamin C. The $EC_{50}$ values of SOD-like activity showed a gradual decrease by germination and that of EtOAc fraction of 5 mm-germinated brown rice was 17 ppm, which was lower concentration than that of 50 ppm vitamin C. The $IC_{50}$ values of nitrite scavenging ability at PH 1.5 also underwent a great decrease by germination and germinated brown rice had the nitrite scavenging ability at lower concentration than brown rice. The results suggest that SOD-like activity and nitrite scavenging ability are thought to be enhanced by the germination effect.

본 연구는 일반현미와 발아현미의 항산화력의 차이를 알아보기 위해 수행되었다. 일반현미와 발아현미 2종(2.5 mm 발아, 5 mm발아)의 총 메탄올 추출물의 SOD 유사활성과 nitrite 소거능을 측정한 결과 모든 시료에서 농도 의존적으로 유의성 있게 활성이 증가하였으며 발아정도에 따라 활성이 달라졌다. 각 시료의 총 메탄올 추출물을 용매의 극성차이를 이용하여 hexane, EtOAc, 물로 분획하고 다시 각 분획물의 SOD 유사활성 및 nitrite 소거능을 측정하여 활성을 비교하였다. 모든 분획물에서 발아가 더 많이 진행될수록 SOD유사활성이 증가하여 특히 5 mm 발아현미의 hekane 분획물과 EtOAc 분획물은 양성 대조군으로 사용한 vitamin C 50 ppm의 74.1%보다 우수하였으며, vitamin C 100 ppm의 94.0%과 유사한 정도의 활성을 보였다. $EC_{50}$ 값 역시 발아정도에 따라 크게 낮아졌으며, 특히 vitamin C의 $EC_{50}$ 값이 38 ppm이었으나, 5 mm 발아현미의 EtOAc 분획물의 $EC_{50}$ 값은 17 ppm으로 분획물임에도 불구하고 vitamin C보다 더 낮은 농도에서 활성을 가졌다. Nitrite 소거능은 현미와 발아현미 모두에서 우수한 것으로 나타났으나, pH 1.5에서 물분획물의 $IC_{50}$ 값은 현미 325 ppm, 2.5 mm 발아현미 120ppm, 5 mm 발아현미 122 ppm으로 현미와 발아현미간의 차이는 컸으나, 2.5 mm 발아현미와 5 mm 발아현미간의 차이는 적어 발아에 의해 더 낮은 농도에서 nitrite 소거능을 가지게 됨을 확인하였다. 이러한 경향은 hexane 분획물과 물분획물에서도 동일하게 나타났다.각각 9.88, 30.8 및 46.5 mg/kg이었다. 이 연구 결과를 통해 CCA 구성 성분은 방부목재로부터 환경 중으로 용출되는 것을 알 수 있었으며 그 성분들이 인간과 생태계에 미칠 악영향을 평가할 필요가 있음을 시사하였다.을 것으로 판단된다.상시킬 가능성이 있을 것으로 생각된다. 이상의 모든 결과로 볼 때 율무의 추출 효소는 chymotrypsin-like serine protease에 속하는 혈전용해효소임을 확인할 수 있었다.smotic control group(A/B 25)에선 통계적으로 유의한 차이를 보이지 않았다(P>0.05). 후기당화합물이 첨가된 경우에 SEM상 분리된 세포사이이음(intercellular junction)과 융합된 미세융모를 관찰할 수 있었다. BSA의 투과성은 일 주 배양 후 A30 dish에서만 일 주 배양 후 B5 dish에 비해 19% 증가하는 소견을 보였으나 통계적인 유의성은 없었다(P>0.05). 결론 : 사구체 상피세포의 HSPG 형성의 감소에 고농도의 당과 후기당화합물은 서로 부가적인 역할을 하고 후기당화합물이 더 큰 역할을 함을 알 수 있다. HSPG 감소 소견과 더불어 SEM상 장기간 고혈당을 유지하면 사구체 여과기전에서 size-selective와 charge-selective 장벽에 결함을 유발할 수 있으며 당뇨병에서의 단백뇨의 기전 중 하나로 생각된다. MAR 값은 군간 유의적이지는 않으나 과체중군(0.76)이 정상체중(0.73) 또는 저체중군(0.73)에 비해 높은 값은 보여주었다. 9. 철분은 과체중군(1.67)이 저체중(0.80) 또는 정상 체중군(0.82)에 비해 영양 질적 지수(INQ)가 높았으며(p<0.0335), 비타민 $B_1$은 정상 체중군이 유의적으로 가장 높은 영양 질적 지수를 보여주었다(p<0.0452)

Keywords

References

  1. Madaz G. 1983. Effect of brown rice and soybean dietary fiber on the control of glucose and lipid metabolism in diabetic rats. Am J Clin Nutr 38: 388-393 https://doi.org/10.1093/ajcn/38.3.388
  2. Muramoto G, Kawamura S. 1991. Rice protein and anti- hypertensive peptide (angiotensin converting enzyme in-hib-itor) from rice. Nippon Shokuhin Kougyo 34: 18-26
  3. Chun HS, Kim IH, Kim HJ. 1995. Effect of brown rice extract on mitomycin C - Induced chromosome aberration in cultured CHL cells. J Kor Food Sci Technol 27: 1003- 1007
  4. Choi SW, Nam SH, Choi HC. 1996. Antioxidative activity of ethanolic extracts of rice brans. Food Sci Botechnol 5: 305-309
  5. Champnagne ET, Hron RJ. 1992. Stability of ethanol-ex-tracted brown rice to hydrolytic and oxidative deterioration. J Food Sci 57: 433-436 https://doi.org/10.1111/j.1365-2621.1992.tb05510.x
  6. Choi JH. 2001. Quality characteristics of the bread with sprouted brown rice flour. J Kor Soc Food Cookery Sci 17: 323-327
  7. Kang MY, Choi YH, Choi HC. 1997. Comparison of some characteristics relevant to rice bread processing between brown and milled rice. J Kor Soc Food Cookery Sci 13: 64-69
  8. Kim SS, Lee WJ. 1997. Characteristics of germinated rice as a potential raw material for sikhe production. J Kor Food Sci Technol 29: 101-106
  9. Omaye ST, Reddy KA, Cross CE. 1977. Effect of butylated hydroxytoluene and other antioxidants on mouse lung metabolism. J Toxicol Environ Health 3: 829-836 https://doi.org/10.1080/15287397709529617
  10. Umemura T, Kodama Y, Nishikawa A, Nomura T, Kanki K, Kuroiwa Y, Ishii Y, Kurokawa Y, Hirosa M. 2006. Nine- week detection of six genotoxic lung carcinogens using the ras$H_2$/BHT mouse model. Cancer Lett 231: 314-318 https://doi.org/10.1016/j.canlet.2005.02.024
  11. Cort WM. 1984. Antioxidant activity of tocopherols and ascorbyl palmitate and ascorbic acid and their mode of action. J Am Oil Chem Soc 51: 321-325 https://doi.org/10.1007/BF02633006
  12. Kitani K, Minami C, Yamamoto T, Kanai S, Ivy GO, Carrillo MC. 2002. Pharmacological interventions in aging and age- associated disorders: potentials of propargylamines for human use. Ann N Y Acad Sci 959: 295-307 https://doi.org/10.1111/j.1749-6632.2002.tb02101.x
  13. Walker R. 1990. Nitrates, nitrites and N-nitrosocompounds: a review of the occurrence in food and diet and the toxi-cological implications. Food Addit Contam 7: 717-768 https://doi.org/10.1080/02652039009373938
  14. Rorald W. 1975. Naturally occurring nitrite in food. J Jpn Soc Food Agric 26: 1735-1742 https://doi.org/10.1002/jsfa.2740261116
  15. Shigeyoshi O. 1974. Advances in chemical carcinogenesis by N-nitroso compounds. J Food Hyg Soc 15: 419-423 https://doi.org/10.3358/shokueishi.15.419
  16. Gray J, Dugan JR. 1975. Inhibition of N-nitrosamine forma-tion in model food systems. J Food Sci 40: 981-985 https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  17. Kyrtopouls SA. 1989. N-nitroso compound formation in human gastric juice. Cancer Surv 8: 423-442
  18. Forman D. 1989. Are nitrates a significant risk factor in human cancer? Cancer Surv 8: 443-458
  19. Marklund S, Marklund G. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469- 474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Bae RN, Lee SK. 1990. Factors affecting browning and its control methods in chopped garlic. J Kor Soc Hort Sci 31: 213-218
  21. Jo KS, Kim HK, Ha JH, Park MH, Shin HS. 1990. Flavor compounds and storage stability of essential oil from garlic distillation. J Kor Food Sci Technol 22: 840-845
  22. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  23. Manna KM, Naing KM, Pe H. 1995. Amylase activity of some roots and sprouted cereals and beans. Food and Nutrition Bulletin 16: 1-4
  24. Tran TU, Suzuki K, Okadome H, Ikezaki H, Homma S, Ohtsubo K, 2005. Detection of changes in taste of japonica and indica brown and milled rice (Oryza sativa L.) during storage using physicochemical analyses and a taste sensing system. J Agric Food Chem 53: 1108-1118 https://doi.org/10.1021/jf049064+
  25. Jakobs C, Jaeken J, Gibson KM. 1993. Inherited disorders of GABA metabolism. J Inherit Metab Dis 16: 704-715 https://doi.org/10.1007/BF00711902
  26. Omori M, Yano T, Okamoto J, Tsushida T, Murai T, Higuchi M. 1987. Effect of anaerobically treated tea (gabaron tea) on blood pressure of spontaneously hyper-tensive rats. Nippon Nogeikagaku Kaishi 61: 1449-1451 https://doi.org/10.1271/nogeikagaku1924.61.1449
  27. Oh CH, Oh SH. 2004. Effect of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J Med Food 7: 19-23 https://doi.org/10.1089/109662004322984653
  28. Kuno T, Hirose Y, Yamada Y, Hata K, Quiang SH, Asano N, Oyama T, Zhi H, Iwasake T, Kobayashi H, Mori H. 2006. Chemoprevention of mouse urinary bladder carcinogenesis by fermented brown rice and rice bran. Oncol Rep 15: 533- 538
  29. Tian S, Nakamura K, Cui T, Kayahara H. 2005. High- performance liquid chromatographic determination of phenolic compounds in rice. J Chromatogr A 1063: 121-128 https://doi.org/10.1016/j.chroma.2004.11.075

Cited by

  1. Changes in Chemical Components of Foxtail Millet, Proso Millet, and Sorghum with Germination vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1128
  2. Studies on the Degree of Polymerization of Amylopectin and Texture Analysis Test of Brown Rice After Germination vol.61, pp.1, 2016, https://doi.org/10.7740/kjcs.2016.61.1.001
  3. The Impact of Cooking on the Antioxidative and Antigenotoxic Effects of Rice vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1370
  4. Enzyme Inhibition Activities of Ethanol Extracts from Germinating Rough Rice (Oryza sativar L.) vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.917
  5. Studies on Antioxidant Activity and Inhibition of Nitric Oxide Synthesis of Germinated Brown Rice Soaked in Mycelial Culture Broth of Phellinus linteus vol.17, pp.8, 2007, https://doi.org/10.5352/JLS.2007.17.8.1141
  6. Changes in Contents of Nutritional Components and Eating Quality of Brown Rice by Pericarp Milling vol.57, pp.1, 2012, https://doi.org/10.7740/kjcs.2012.57.1.035
  7. Antioxidant Activity and Anticancer Effects of Rough Rice (Oryza sativa L.) by Germination Periods vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.014
  8. Anti-Inflammatory and Antidiabetic Effects of Brown Rice (Oryza sativa L.) Extracts vol.22, pp.1, 2012, https://doi.org/10.5352/JLS.2012.22.1.126
  9. Changes in Nutraceutical Lipid Constituents of Pre- and Post-Geminated Brown Rice Oil vol.26, pp.3, 2013, https://doi.org/10.9799/ksfan.2013.26.3.591
  10. Effects of Germinated Brown Rice Addition on the Flavor and Functionality of Yogurt vol.36, pp.4, 2016, https://doi.org/10.5851/kosfa.2016.36.4.508
  11. Effect of Brown Rice Flour on Muffin Quality vol.40, pp.7, 2011, https://doi.org/10.3746/jkfn.2011.40.7.986
  12. Antioxidant and Angiotensin Converting Enzyme I Inhibitory Activity on Different Parts of Germinated Rough Rice vol.40, pp.6, 2011, https://doi.org/10.3746/jkfn.2011.40.6.775
  13. Antiproliferation Effects of Ethanol and Water Extracts from Germinated Rough Rice vol.39, pp.8, 2010, https://doi.org/10.3746/jkfn.2010.39.8.1107
  14. The Change in Biological Activities of Brown Rice and Germinated Brown Rice vol.40, pp.6, 2011, https://doi.org/10.3746/jkfn.2011.40.6.781
  15. Changes in Chemical Composition of Rough Rice (Oryza sativa L.) according to Germination Period vol.40, pp.9, 2011, https://doi.org/10.3746/jkfn.2011.40.9.1265
  16. Changes in the Functional Components of Barley Produced from Different Cultivars and Germination Periods pp.0009-0352, 2017, https://doi.org/10.1094/CCHEM-05-17-0114-R
  17. Effect of Germination and Roasting Treatment on the Quality Characteristics and Antioxidant Properties of Black Soybean Flours vol.22, pp.1, 2018, https://doi.org/10.13050/foodengprog.2018.22.1.75
  18. 한국산 발아 벼 추출물의 여러 가지 암세포주에 대한 증식 억제 효과 비교 vol.39, pp.3, 2010, https://doi.org/10.3746/jkfn.2010.39.3.325
  19. 현미와 발아현미의 상부 위장관 보호 효능 vol.31, pp.5, 2006, https://doi.org/10.6116/kjh.2016.31.5.85.
  20. LC-QTOF-MS를 활용한 현미 중 동물용의약품의 정량 분석 vol.21, pp.3, 2006, https://doi.org/10.7585/kjps.2017.21.3.269
  21. 발아와 볶음처리에 따른 콩가루 품질 및 이화학 특성 vol.50, pp.2, 2018, https://doi.org/10.9721/kjfst.2018.50.2.143
  22. Rice as an alternative feed ingredient in swine diets vol.63, pp.3, 2006, https://doi.org/10.5187/jast.2021.e5