References
- Langergraber G., Fleischmann N., and F. Hofstaedter (2003), A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater, Water Sci. Tech. 47(2), 63-71
- Givens D. I. and E. R. Deaville (1999), The current and future role of near infrared reflectance spectroscopy in animal nutrition, J. Agr. Res. 50(7), 1131-1145 https://doi.org/10.1071/AR98014
- Vaidyanathan, S., S. White, L. Harvey, and B. McNeil (2003), Influence of morphology on the near-infrared spectra of mycelial biomass and its implications in bioprocess monitoring, Biotech. Bioeng. 82(6), 715-724 https://doi.org/10.1002/bit.10621
- Climander, C. and C. F. Mandenius (2002), Online monitoring of a bioprocess based on a multi-analyzer system and multivariate statistical process modeling, J. Chem. Tech. Biotech. 77, 1157-1168 https://doi.org/10.1002/jctb.691
- Tartakovsky, B., M. Scheintuch, J. M. Hilmer, and T. Scheper (1996), Application of scanning fluorometery for monitoring of a fermentation process, Biotech. Progr. 12, 126-131 https://doi.org/10.1021/bp950045h
- Mukherjee, J., C. Lindermann, and T. Scheper (1999), Fluorescence monitoring during cultivation of Enterobacter aerogenes at different oxygen levels, Appl. Microbiol. Biotech. 52, 489-494 https://doi.org/10.1007/s002530051550
- Marose, S., C. Lindemann, and T. Scheper (1998), Two-dimensional fluorescence spectroscopy: A new tool for on-line bioprocess monitoring, Biotech. Prog. 14, 63-74 https://doi.org/10.1021/bp970124o
- Wolf, G., J. S. Almeida, C. Pinheiro, V. Correia, C. Rodrigues, MAM. Reis, and J. G. Crespo (2001), Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes, Biotech. Bioeng. 72, 297-306 https://doi.org/10.1002/1097-0290(20010205)72:3<297::AID-BIT6>3.0.CO;2-B
- Boehl, D., D. Solle, B. Hitzmann, and T. Scheper (2003), Chemometric modeling with two-dimensional fluorescence data for Claviceps purpurea bioprocess characterization, J. Biotech. 105, 179-188 https://doi.org/10.1016/S0168-1656(03)00189-5
- Basheer, I. A. and M. Hajmeer (2000), Artificial neural networks: fundamentals, computing, design, and application, J. Microbiol. Meth. 43, 3-31 https://doi.org/10.1016/S0167-7012(00)00201-3
- Bhat, N. V. and T. J. (1992), Determining model structure for neural network stripping, Compo Chem. Eng. 16, 271-281
- Bo, R. (2003), Multivariate calibration. What is in chemometrics for the analytical chemist? Anal. Chim. Acta. 500, 185-194 https://doi.org/10.1016/S0003-2670(03)00681-0
- Geladi P., B. Sthson, J. Nystrom, T. Lillhinga, T. Lestander, and J. Burger (2004), Chemometrics in Spectroscopy, Spectrochim. Acta. Part B 59, 1347-1357
- Jolliffe, I. T. (1986), Principal component analysis, New York, Springer
- Dufour, E. and A. Riaublanc (1997), Potentiality of spectroscopic methods for the characterization of dairy products I Front-face fluorescence study of raw, heated and homogenized milks, Le Lait 77(6), 657-670 https://doi.org/10.1051/lait:1997647
- Guimet, F., J. Ferre, R. Bogue, and F. X. Rius (2004), Application of unfold principal component analysis and parallel factor analysis to the extrapolatory analysis of olive oils by means of excitation-emission matrix fluorescence spectroscopy, Anal. Chim. Acta. 515. 75-85 https://doi.org/10.1016/j.aca.2004.01.008
- Tartakovsky, B., L. A. Lishman, and R. L. Legge (1996), Application of multi-wavelength fluorometry for monitoring wastewater treatment process dynamics, Water Res. 30, 2941-2948 https://doi.org/10.1016/S0043-1354(96)00196-0
- Karim. M. N., D. Hodge, and L. Simon (2003), Data-based modeling and analysis of bioprocesses: some real experiences, Biotech. Prog. 19, 1591-1605 https://doi.org/10.1021/bp015514w
- Cooper, J. B. (1999), Chemometric analysis of Raman spectroscopic data for process control applications, Chemomet Intell. Lab. Sys. 46, 231-247 https://doi.org/10.1016/S0169-7439(98)00174-9
- Otsuka, M. (2004), Comapartive particle size determination of phenacetin bulk powder by using Kubelka-Munk theory and principal component regression analyis based on near-infrared spectroscopy, Powder Tech. 141, 244-250 https://doi.org/10.1016/j.powtec.2004.01.025
- Skibsted, E., C. Lindemann, C. Roca, and L. Olsson (2001), On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration, J. Biotech. 88, 47-57 https://doi.org/10.1016/S0168-1656(01)00257-7
- Haack, M. B., A. Eliasson, and L. Olsson (2004), On-line cell mass monitoring of Saccharomyces cerevisiaecultivations by multi-wavelength fluorescence, J. Biotech. 114, 199-208 https://doi.org/10.1016/j.jbiotec.2004.05.009
- Wentzell, P. D. and L. V. Montoto (2003), Comparison of principal components regression and partial least squares regression through generic simulations of complex mixturtes, Chem. Intell. Lab. Sys. 65, 257-279 https://doi.org/10.1016/S0169-7439(02)00138-7
- Rhee, J. I., Lee K.-I., Kim C.-K., Yim Y.-S., Chung S-W., Wei, J., and K.-H. Bellgardt (2005), Classification of two-dimensional fluorescence spectra using self-organizing maps, Biochem. Eng. J. 22, 135-144 https://doi.org/10.1016/j.bej.2004.09.008
- Chung, S. Y, Seo K. H., and Rhee J. I. (2005), Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli, Proc. Biochem. 40. 385-394
- Shimizu, H., K. Araki, S. Shioya, and K. I. Suga (1991), Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture, Biotech. Bioeng. 38, 196-205 https://doi.org/10.1002/bit.260380212
- Tietze, F. (1969), Enzymic method for quantitative determination of nanogram amount of total and oxidized glutathione, Anal. Biochem. 27, 502-522 https://doi.org/10.1016/0003-2697(69)90064-5
- Teshima, N., H. Katsumate, M. Kurihara, T. Sakai, and T. Kawashima (1999), Flow-injection determination of copper(II) based on its catalysis on the redox reaction of cysteine with iron(III) in the presence of 1,10-phenanthroline, Talanta 50, 41-47 https://doi.org/10.1016/S0039-9140(99)00108-3
- Liu, R. X., J. Kuang, Q. Gong, and X. L. Hou (2003), Principal component regression analysis with SPSS, Comp. Meth. Prog. Biomed. 71, 141-147 https://doi.org/10.1016/S0169-2607(02)00058-5
- Geladi, P. and B. R. Kowalski (1986), Partial least-squares regression: tutorial, Anal. Chim. Acta. 185, 1-17 https://doi.org/10.1016/0003-2670(86)80028-9
- Maltlab manual, vers. 6.1, The Mathworks, Inc., USA, 2002
- Lee, K. I., Yim Y. S., Chung S. W., Wei J., and Rhee J. I. (2006), Application of artificial neural networks to the analysis of 2D fluorescence spectra in recombinant E.coli fermentation processes, J. Chem. Tech. Biotech. in print
- Lindemann, C., S. Marose, H. O. Nielson, and T. Scheper (1998), 2-Dimensional fluorescence spectroscopy for on-line bioprocess monitoring, Sens. Actuat. B 51, 271-277
- Morel, M., K. Santamaria, M. Perrier, S. R. Guiot, and B. Tartakovsky (2004), Application of multi-wavelength fluorometery for on-line monitoring of an anerobic digestion process, Water Res. 38, 3287-3296 https://doi.org/10.1016/j.watres.2004.05.003
- Hegedorn, A., R. L. Legge, and H. Budman (2003), Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations, Biotech. Bioeng. 83(1), 104-111 https://doi.org/10.1002/bit.10649