참고문헌
- ?Agrawal, O. P., 2001, 'Stochastic Analysis of Dynamic System Containing Fractional Derivatives,' Journal of Sound and Vibration, Vol. 247, No. 5, pp. 927-938 https://doi.org/10.1006/jsvi.2001.3682
- Bagley, R. L. and Torvik, P. J., 1983, 'Fractional Calculus-a Different Approach to the Analysis of Viscoelastically Damped Structures,' AIAA Journal, Vol. 21, pp. 741-748 https://doi.org/10.2514/3.8142
- Elshehawey, E. F., Elbarbary, E. M. E., Afifl, N. A. S. and EI-Shahed, M., 2001, 'On the Solution of Theendolymph Equation Using Fractional Calculus,' Applied Mathematics and Computation, Vol. 124, pp. 337-341 https://doi.org/10.1016/S0096-3003(00)00094-1
- Enelund, M. and Josefson, B. L., 1997, 'Time-domain Finite Element Analysis of Viscoelastic Structures with Fractional Derivative Constitutive Relations,' American Institute of Aeronautics and Astronautics Journal, Vol. 35, pp. 1630-1637 https://doi.org/10.2514/2.2
- ?Enelund, M., Ahler, L. M., Runesson, K. and Jonsefson, B. L., 1999, 'Formulation and Integration of the Standard Linear Viscoelastic Solid with Fractional Order Rate Laws,' International Journal of Solid and Structures, Vol. 36, pp. 2417-2442 https://doi.org/10.1016/S0020-7683(98)00111-5
- Ingman, D. and Suzdalnitsky, J., 2001, 'Iteration Method for Equation of Viscoelastic Motion with Fractional Differential Operator of Damping,' Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp. 5027-5036 https://doi.org/10.1016/S0045-7825(00)00361-3
- Miller, K. S., 1993, 'The Mittag-Leffler and Related Functions,' Integral Transforms and Special Functions, Vol. 1, pp. 41-49 https://doi.org/10.1080/10652469308819007
- Narahari, Achar, B. N., Hanneken, J. W., Enck, T. and Clarke, T., 2001,' Dynamics of the fractional oscillator,' Physica A, Vol. 297, pp. 361-367 https://doi.org/10.1016/S0378-4371(01)00200-X
- Oldham, K. B. and Spanier, J., 1974, The Fractional Calculus, New York : Academic Press
- Rossikhin, Y. A. and Shitikova, M. V., 1997, 'Application of Fractional Operators to the Analysis of Damped Vibrations of Viscoelastic Single-mass Systems,' Journal of Sound and vibration, Vol. 199, No. 4, pp.567-586 https://doi.org/10.1006/jsvi.1995.9988
- Samko, S. G., Kilbas, A. A. and Marichev, O. I., 1993, Fractional Integrals and Derivatives, Yverdon, Switzerland : Gordon and Breach
- Samuel W. J. Welch, Ronald A. L. Rorrer and Ronald G. Duren, 1999, 'Application of Time-Basedfractional Calculus Methods to Viscoelastic Creep and Stress Relaxation of Materials,' Mechanics of Time-Dependent Materials, Vol. 3, pp. 279-303 https://doi.org/10.1023/A:1009834317545
- Slater, L. J., 1966, Generalized Hypergeometric Functions, Cambridge, England, Cambridge University Press
- Suarez, L. and Shokooh, A., 1997, 'An Eigen-vector Expansion Method for the Solution of Motion Containing Derivatives,' ASME Journal of Applied Mechanics, Vol. 64, pp. 629-635 https://doi.org/10.1115/1.2788939
- Sweldens, W. and Piessens, R., 1994, 'Quadrature Formulae and Asymptotic and Asymptotic Error Expansions for wavelet Approximations of Smooth Functions,' SIAM Journal on Numerical Analysis, Vol. 31, pp. 1240-1264 https://doi.org/10.1137/0731065
- Wang, J. and Zhou, Y. H., 1998, 'Error Esti?mation for the Generalized Gaussian Integral Method Weighted by Scaling Functions of wavelets,' Journal of Lanzhou University, natural science, Vol. 34, pp. 26-30
- Wang Jizeng, 2001, 'Generalized Theory and Arithmetic of Orthogonal wavelets and Applications to Researches of Mechanics Including Piezoelectric Smart Structures,' Ph. D. Thesis, Lanzhou University, China
- Wim Sweldens, 1995, 'The Construction and Application of wavelets in Numerical Analysis,' Ph. D. Thesis, Columbia University
- Xu Mingyu and Tan Wenchang, 2001, 'Theoretical Analysis of the Velocity Field, Stress Field and Vortex Sheet of Generalized Second Order Fluid with Fractional Anomalous Diffusion,' Science in China, Series A, Vol. 44, No. 7, pp. 1387-1499 https://doi.org/10.1007/BF02877067
- Zhou, Y. H., Wang, J. and Zheng, X. J., 1998, 'Application of Wavelets Galerkin FEM to bending of Beam and Plate Structures,' Applied Mathematics and Mechanics, Vol. 19, pp. 697-706 https://doi.org/10.1007/BF02457749
- Zhou, Y. H., Wang, J. and Zheng, X. J., 1999, 'Applications of wavelet Galerkin FEM to bending of plate structure,' Acta Mechanica Salida Sinica, Vol. 12, pp. 136-143 https://doi.org/10.1007/BF02480733