DOI QR코드

DOI QR Code

부직포를 이용한 하이브리드 복합재료의 개발

On the Development of Hybrid Composites with Non-Woven Tissue

  • 발행 : 2006.04.01

초록

부직포를 이용한 하이브리드 복합재료는 일반적인 섬유강화 적층복합재료의 기계적 특성을 개선하기 위하여 개발되었다. 부직포 하이브리드 프리프레그는 전형적 FRP 프리프레그와 부직포 프리프레그로 이루어전 있다. 부직포 프리프레그는 부직포와 수지의 조합에 의해 만들어진다. 부직포는 단섬유가 평면상에 불규칙적으로 분산되어 배치된 형상이다. 부직포를 이용한 하이브리드 프리프레그의 개발목적은 (i) 적층간의 층간특성(층간파괴인성 및 층간강도)을 향상시키고, (ii) 저비용으로 재료의 기계적 강도에 대한 신뢰성을 개선하며, (iii) 복합적층판에서 강화가 요구되는 층에 인성과 강도를 부여함에 있다. 상기의 목적을 달성하기 위하여 부직포층의 기포를 감소시키기 위한 제조기술을 제안하였다. 그 결과, 부직포를 이용한 하이브리드 개념을 도입함으로써 복합적층판의 층간파손특성이 크게 개선되었다.

The hybrid composite materials with non-woven tissue (NWT) was developed to improve the mechanical properties of conventional FRP composite materials. The hybrid prepreg with NWT consists of FRP prepreg and NWT prepreg. The NWT prepreg consists of NWT and polymer resin. The NWT has short fibers, discretely distributed with in-plane random orientation fibers. The purposes of this study of hybrid prepreg with NWT are (i) to increase the interlaminar properties(the fracture toughness and strength), (ii) to improve the mechanical properties and reliability, while maintaining a low cost, (iii) to introduce a tough and strong interlayer at critical positions to be required of strength in the laminate. To accomplish the above purposes, a production technique to decrease voids in NWT layers was proposed in this paper. The interlaminar failure characteristics of laminated composite materials was tremendously improved by hybrid concept with NWT.

키워드

참고문헌

  1. R. Marissen, 'Flight Simulation Behaviour of Aramid Reinforced A1umimnn Laminates (ARALL)', Engineering Fracture Mechanics, Vol. 19, 1984, pp. 261-277 https://doi.org/10.1016/0013-7944(84)90021-3
  2. R. O. Ritchie, W. Yu and R. J. Bucci, 'Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-Tip Shielding from Crack Bridging,' Engineering Fracture Mechanics, Vol. 32, 1989, pp. 361-377 https://doi.org/10.1016/0013-7944(89)90309-3
  3. M. M. Stevanovic and T. B. Stecenko, 'Mechanical Behaviour of Carbon and Glass Hybrid Fiber Reinforced Polyester Composites,' Journal of Material Science, Vol. 27, 1992, pp. 941-946 https://doi.org/10.1007/BF01197646
  4. J. K. Kim, C. Baillie, J, Poh and Y. W. Mai, 'Fracture Toughness of CFRP with Modified Epoxy Resin Materials,' Composites Science Technology, Vol. 43, 1992, pp. 283-297 https://doi.org/10.1016/0266-3538(92)90099-O
  5. N. Odagiri, H. Kishi and M. Yamashita, 'Development of Torayca Prepreg P2302 Carbon Fiber Reinforced Plastic for Aircraft Primary Structural Materials,' Advanced Composite Materials (in Japan), Vol. 5, 1996, pp. 249-252 https://doi.org/10.1163/156855196X00301
  6. F. Ozdil and L. A. Carlsson, 'Mode I Interlaminar Fracture of Interleaved Graphite/Epoxy,' Journal of Material Science, Vol. 26, 1992, pp. 432-459
  7. O. Ishai, H. Rosenthal, N, Sela and E. Drukker, 'Effect of Selective Adhesive Interleaving on Inter laminar Fracture Toughness of Graphite/Epoxy Composite Laminates,' Composites (A), Vol. 19, 1988, pp. 49-54 https://doi.org/10.1016/0010-4361(88)90543-5
  8. S. Yamashita, H. Hatta, T. Takei and T. Sugano, 'Interlaminar Reinforcement of Laminated Composites by Addition of Orientated Whiskers in the Matrix,' Journal of Composite Materials, Vol. 26, 1992, pp. 1254-1268 https://doi.org/10.1177/002199839202600902
  9. SK-Chemicals Co. Ltd. in Korea, 'Document of Non-Woven Tissue,' 1996
  10. S. H. Lee and H. Noguchi, 'Shear Characteristics of Hybrid Composites with Non-Woven Carbon Tissue,' JSME International Journal (A), Vol. 44, 2001, pp. 535-541 https://doi.org/10.1299/jsmea.44.535
  11. S. H. Lee, H. Noguchi, Y. B. Kim and S. K. Cheong, 'Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part I-Mode II,' Journal of Composite Materials, Vol. 36, 2002, pp. 2153-2168 https://doi.org/10.1177/0021998302036018981
  12. S. H. Lee, H. Noguchi, Y. B. Kim and S. K. Cheong, 'Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part II-Mode I,' Journal of Composite Materials, Vol. 36, 2002, pp. 2169-2181 https://doi.org/10.1177/0021998302036018980
  13. S. H. Lee, H. Noguchi and S. K. Cheong, 'Static Behavior Characteristics of Hybrid Composites with Non-Woven Carbon Tissue,' Journal of Composite Materials, Vol. 37, 2003, pp. 233-252 https://doi.org/10.1177/0021998303037003424
  14. S. H. Lee, H. Noguchi and S. K. Cheong, 'Fatigue Behavior Characteristics of Hybrid Composites with Non-Woven Carbon Tissue,' Journal of Composite Materials, Vol. 37, 2003, pp. 253-268 https://doi.org/10.1177/0021998303037003992
  15. S. H. Lee, Y. Aono, H. Noguchi and S. K. Cheong, 'Damage Mechanism of Hybrid Composites with Non-Woven Carbon Tissue Subjected to Quasi-Static Indentation Loads,' Journal of Composite Materials, Vol. 37. 2003, pp. 333-349 https://doi.org/10.1177/0021998303037004334
  16. S. H. Lee, Y. Aono, H. Noguchi and S. K. Cheong, 'Residual Compressive Failure Characteristics of Hybrid Composites with Non-Woven Carbon Tissue after Indentation Damage,' Journal of Composite Materials, Vol. 38, 2004, pp. 1461-1477 https://doi.org/10.1177/0021998304043744
  17. P. W. Manders and M. G. Bader, 'The Strengthof Hybrid Glass/Carbon Fiber Composites: Part I Failure Strain Enhancement and Failure Mode,' Journal of Material Science, Vol. 16, 1981, pp. 2233-2245 https://doi.org/10.1007/BF00542386
  18. S. K. Cheong, S. H. Lee and S. G. Lim, 'A Study on the Material Properties of Carbon Fiber Reinforced Composite Laminates with Non-Woven Carbon Mat,' The First Asian-Australasian Conference on Composite Materials (ACCM-I), Japan, 1998, pp. 420.1-420.4
  19. P. Compston and P. Y. B. Jar, 'Mode I Interlaminar Fracture Toughness of Glass-FibreNinyl Ester: Effect of Global Fibre Volume Fraction,' The First Asian-Australasian Conference on Composite Materials (ACCM-I), Japan, 1998, pp. 710.1-710.4
  20. ASTM D3039-95, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, 1995
  21. W. A. WeibulI, 'Statistical Distribution Function of Wide Applicability,' Journal of Applied Mechanics, Vol. 18, 1958, pp. 293-310