참고문헌
- Argyris, J.H., Dunne, P.C., Angelopoulos, T. and Bichat, B. (1974), 'Large natural strains and some special difficulties due to non-linearity and incompressibility in finite elements', Comput. Methods Appl. Mech. Eng., 4, 219-278 https://doi.org/10.1016/0045-7825(74)90035-8
- Askes, H., Kuhl, E. and Steinmann, P. (2004), 'An ALE formulation based on spatial and material settings of continuum mechanics, Part 2: Generic hyperelastic formulation', Comput. Methods Appl. Mech. Eng., 193, 4223-4245 https://doi.org/10.1016/j.cma.2003.09.031
- Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice Hall, Englewood Cliffs
- Beatty, M.F. (1987), 'Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues with examples', Appl. Mech. Rev., 40, 1699-1734 https://doi.org/10.1115/1.3149545
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), 'Element-free Galerkin methods', Int. J. Numer. Methods Eng., 37, 229-256 https://doi.org/10.1002/nme.1620370205
- Chen, J.-S. and Pan, C. (1996), 'A pressure projection method for nearly incompressible rubber hyperelasticity, Part I: Theory', J. Appl. Mech., ASME, 63, 862-868 https://doi.org/10.1115/1.2787240
- Chen, J.S., Yoon, S., Wang, H.P. and Liu, W.K. (2000), 'An improved reproducing kernel particle method for nearly incompressible finite elasticity', Comput. Methods Appl. Mech. Eng., 181, 117-145 https://doi.org/10.1016/S0045-7825(99)00067-5
- Cheng, J-S. and Wu, C.-T. (1996), 'A pressure projection method for nearly incompressible rubber hyperelasticity, Part II: Applications', J. Appl. Mech., ASME, 63, 869-876 https://doi.org/10.1115/1.2787241
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2001), Concepts and Applications of Finite Element Analysis, J. Wiley & Sons, New York, 4th Edition
- Crisfield, M.A. (1981), 'A fast incremental/iterative solution procedure that handles 'snap-through'', Comput. Struct., 13, 55-62 https://doi.org/10.1016/0045-7949(81)90108-5
- De Souza Neto, E.A. and Feng, Y.T. (1999), 'On the determination of the path direction for arc-length methods in the presence of bifurcations and 'snap-backs'', Comput. Methods Appl. Mech. Eng., 179, 81-89 https://doi.org/10.1016/S0045-7825(99)00042-0
- Gadala, M.S. (1992), 'Alternative methods for the solution of hyperelastic problems with incompressibility', Comput. Struct., 42, 1-10 https://doi.org/10.1016/0045-7949(92)90530-D
- Gent, A.N. (2001), Engineering with Rubber, 2nd Edition, Hanser Publishers
- Hermmann, L.R. (1965), 'Elasticity equations for incompressible and nearly incompressible materials by a variational theorem', AIAA J., 3, 1896-1900 https://doi.org/10.2514/3.3277
- Hinton, E., and Campbell, J.S. (1974), 'Local and global smoothing of discontinuous finite element functions using a least squares method', Int. J. Numer. Methods Eng., 8, 461-480 https://doi.org/10.1002/nme.1620080303
- Kuhl, E., Askes, H. and Steinmann, P. (2004), 'An ALE formulation based on spatial and material settings of continuum mechanics, Part 1: Generic hyperelastic formulation', Comput. Methods Appl. Mech. Eng., 193, 4207-4222 https://doi.org/10.1016/j.cma.2003.09.030
- Liu, W.K., Chang, H., Chen, J.S. and Belytschko, T. (1988), 'Arbitrary Lagrangian Eulerian Petrov-Galerkin finite elements for nonlinear continua', Comput. Methods Appl. Mech. Eng,, 68, 259-310 https://doi.org/10.1016/0045-7825(88)90011-4
- Liu, W.K., Chen, J.S. and Zhang, Y.F. (1991), 'Adaptive ALE finite elements with particular reference to external work rate on frictional interface', Comput. Methods Appl. Mech. Eng, 93, 189-216 https://doi.org/10.1016/0045-7825(91)90151-U
- Masud, A. and Xia, K. (2005), 'A stabilized mixed finite element method for nearly incompressible elasticity', J. Appl. Mech., 72, 711-720 https://doi.org/10.1115/1.1985433
- Monaghan, J.J. (1988), 'An introduction to SPH', Comput. Phys. Comm., 48, 89-96 https://doi.org/10.1016/0010-4655(88)90026-4
- Nayroles, B., Touzot, G. and Villon, P. (1992), 'Generalizing the finite element method: Diffuse approximation and diffuse elements', Comput. Mech., 10, 307-318 https://doi.org/10.1007/BF00364252
- Obata, Y. (1974), PhD Thesis, School of Engineering, Kyoto University, Japan
- Ogden, R.W. (1972), 'Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubber-like solids', Proc. R. Soc. London, A 326, 565-584
- Ogden, R.W. (1984), Non-linear Elastic Deformations, Ellis Horwood, Chichester
- Peng, S.H., Shimbori, T. and Naderi, A. (1994), 'Measurement of elastomer's bulk modulus by means of a confined compression test', Rubber Chem. Technology, 67, 871-879 https://doi.org/10.5254/1.3538718
- Peng, S.H. and Chang, W.V. (1997), 'A compressible approach in finite element analysis of rubber-elastic materials', Comput. Struct., 62, 573-593 https://doi.org/10.1016/S0045-7949(96)00195-2
- Sulsky, D., Chen, Z. and Schreyer, H.L. (1994), 'A particle method for history-dependent materials', Comput. Methods Appl. Mech. Eng, 118, 179-196 https://doi.org/10.1016/0045-7825(94)00033-6
- Sussman, T. and Bathe, K.J. (1987), 'A finite element formulation for nonlinear incompressible elastic and inelastic analysis', Comput. Struct., 26, 357-409 https://doi.org/10.1016/0045-7949(87)90265-3
- Treloar, L.R.G. (1944), 'Stress-strain data for vulcanized rubber under various types of deformation', Trans. Fraday Soc., 40, 59-70 https://doi.org/10.1039/tf9444000059
- Zidi, M. and Cheref, M. (2002), 'Finite deformations of a hyperelastic, compressible and fibre reinforced tube', European Journal of Mechanics A/Solids, 21, 971-980 https://doi.org/10.1016/S0997-7538(02)01239-1
- Zienkiewicz, O.C. (1977), The Finite Element Method, 3rd Edn. Mc-Graw-Hill, New York
피인용 문헌
- Static analysis of rubber components with piezoelectric patches using nonlinear finite element vol.5, pp.1, 2006, https://doi.org/10.12989/sss.2009.5.1.023