Relationship of soil profile strength and apparent soil electrical conductivity to crop yield

실시간 포장에서 측정한 토양 경도 및 전자장 유도 전기전도도와 작물수량과의 관계

  • Jung, Won-Kyo (National Institute of Agricultural Science and Technology) ;
  • Kitchen, Newell R. (United States Department of Agriculture-Agricultural Research Services) ;
  • Sudduth, Kenneth A. (United States Department of Agriculture-Agricultural Research Services)
  • Received : 2006.01.04
  • Accepted : 2006.02.27
  • Published : 2006.04.30

Abstract

Understanding characteristics of claypan soils has long been an issue for researchers and farmers because the high-clay subsoil has a pronounced effect on grain crop productivity. The claypan restricts water infiltration and storage within the crop root zone, but these effects are not uniform within fields. Conventional techniques of identifying claypan soil characteristics require manual probing and analysis which can be quite expensive; an expense most farmers are unwilling to pay. On the other hand, farmers would be very interested if this information could be obtained with easy-to-use field sensors. Two examples of sensors that show promise for helping in claypan soil characterization are soil profile strength sensing and bulk soil apparent electrical conductivity (ECa). Little has been reported on claypan soils relating the combined information from these two sensors with grain crop yield. The objective of this research was to identify the relationships of sensed profile soil strength and soil EC with nine years of crop yield (maize and soybean) from a claypan soil field in central Missouri. A multiple-probe (five probes on 19-cm spacing) cone penetrometer was used to measure soil strength and an electromagnetic induction sensor was used to measure soil EC at 55 grid site locations within a 4-ha research field. Crop yields were obtained using a combine equipped with a yield monitoring system. Soil strength at the 15 to 45 cm soil depth were significantly correlated to crop yield and ECa. Estimated crop yields from apparent electrical conductivity and soil strength were validated with an independent data set. Using measurements from these two sensors, standard error rates for estimating yield ranged from 9 to 16%. In conclusion, these results showed that the sensed profile soil strength and soil EC could be used as a measure of the soil productivity for grain crop production.

점토경반층 토양에서 수량 변이의 특성을 파악하기 위하여 센서를 통하여 관측된 깊이별 토양경도 및 ECa와 작물의 수량과의 관련성을 분석한 결과, 깊이별 토양의 경도는 점토가 집적된 지표면으로부터 15-30 cm 지점의 점토경반층 (argillic horizon)에서 높게 나타내고 있으며 토양의 깊이가 깊은 지점에서 토양경도의 변이가 작게 나타났다. 1994년부터 2002년까지 콩과 옥수수 수량과 작물생육기의 강우량을 분석한 결과 7-8월의 강우량이 작물의 수량과 매우 밀접한 관계를 가지고 있으며 이 기간의 강우량이 150 mm 이하이면 작물이 수분 부족으로 수량이 낮아지는 것으로 나타났다. 지표로부터 15-45 cm 지점에서 토양의 경도와 ECa 가 작물의 수량과 매우 유의한 상관을 갖는 것으로 나타났으며 "drought boundary" 인 7-8월의 강우량이 150 mm를 기점으로 각기 반대의 상관을 보이는 것으로 나타났다. 측정된 토양의 깊이별 경도 값과 ECa 를 이용하여 수량 추정식을 계산 하였으며 추정식의 검증을 위하여 별도의 독립적인 자료를 이용하여 추정된 수량과 측정된 수량의 표준오차를 비교한 결과 측정된 수량에 대한 표준오차의 비율이 4-16% 로 나타났으며 7-8월의 강우량이 150 mm 이하로 건조한 경우에 표준오차가 같은 시기에 강우량이 150 mm 이상으로 습윤한 경우보다 현저하게 표준오차가 크게 나타났다. 결론적으로 신속하고 경제적으로 이용할 수 있는 센서 측정자료와 작물수량과의 관련성을 분석한 결과, 연구에 이용된 점토경반층 토양에서 센서를 이용하여 측정한 ECa 및 깊이별 토양경도와 작물 수량간에 통계적으로 유의한 상관이 있음을 알 수 있다.

Keywords

References

  1. Christy, C., K. Collings, P. Drummond, E. Lund. 2004. A Mobile Sensor Platform for Measurement of Soil pH and Buffering. ASAE Annual Meeting. Paper number 041042
  2. Chung, S.O., K.A. Sudduth, S.T. Drummond. 2002. Determining yield monitoring system delay time with geostatistical and data segmentation approaches. Transactions of the ASAE. 45(4): 915-926
  3. Chung, S.O., K.A. Sudduth, Carol Plouffe, Newell R. Kitchen. 2004. Evaluation of an On-the-go Soil Strength Profile Sensor Using Soil Bin and Field Data. ASAE Annual Meeting Paper number 041039
  4. Geonics Limited. 1997. Applicationsof electromagnetic methods: Soils Salinity. Jan. Mississanga, Ontario, Canada
  5. Johnson, C.K., K.M. Eskridge, B.J. Wienhold, J.W. Doran, G.A. Peterson, and G.W. Buchleiter. 2003. Using electrical conductivity classification and withinfield variability to design fieldscale research. Agron. J. 95:602-613 https://doi.org/10.2134/agronj2003.0602
  6. Jung, W.K., N.R. Kitchen, K.A. Sudduth, R.J. Kremer, and P.P. Motavalli. 2005. Relationship of apparent soil electrical conductivity to claypan soil properties. Soil. Sci. Soc. Am. J. 69:883-892 https://doi.org/10.2136/sssaj2004.0202
  7. Kitchen, N.R., S.T. Drummond, E.D. Lund, K.A. Sudduth, and G.W. Buchleiter. 2003. Soil electrical conductivity and topography related to yield for three contrasting soil-crop systems. Agron. J. 95:438-449
  8. Kitchen, N.R., D.F. Hughes, W.W. Donald, and E.E. Alberts. 1998. Agrichemical movement in the root zone of claypan soils: Ridge and mulchtillage systems compared. Soil Tillage Res. 48:179193 https://doi.org/10.1016/S0167-1987(98)00144-5
  9. Kitchen, N.R., K.A. Sudduth, and S.T. Drummond. 1999. Soil electrical conductivity as a crop productivity measure for claypan soils. J. Prod. Agric. 12:607-617 https://doi.org/10.2134/jpa1999.0607
  10. Nikiforoff, C.C., and M. Drosdoff. 1943. Genesis of claypan soil. Soil Sci. 53:459-482
  11. Raper, R.L., B.H. Washington, J.D. Jarrell. 1999. A tractor-mounted multiple probe soil cone penetrometer. Applied Engineering in Agriculture. VOL. 15(4): 287-290 https://doi.org/10.13031/2013.5779
  12. Rhoades, J.D., P.A.C. Raats, and R.J. Prather. 1976. Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am. J. 40:651-655 https://doi.org/10.2136/sssaj1976.03615995004000050017x
  13. Soil Survey Staff. 1981. Land resource region and major land resource areas of the United States. USDA-SCS Agric. Handb. 296, U.S. Gov. Print. Office, Washington, DC
  14. Sudduth, K.A., N.R. Kitchen, G.A. Bollero, D.G.Bullock, and W.J. Wiebold. 2003. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron. J. 95:472-482 https://doi.org/10.2134/agronj2003.0472
  15. USDA-NRCS. 1995. Soil survey of Audrain County. Missouri (1995387974/00537/SCS). U.S. Gov. Print. Office, Washington, DC