• Title/Summary/Keyword: Apparent electrical conductivity

Search Result 28, Processing Time 0.019 seconds

Electrical resistivity survey for evaluation of reinforced region by cement grouting in dike (전기비저항 수직탐사를 이용한 저수지 그라우팅 구간 평가)

  • 송성호;장의웅;김진호;김진성;김진춘
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.63-73
    • /
    • 2002
  • To evaluate reinforced region of dike by cement grouting, we investigated both the electrical resistivity and the strength of cement grout having various water-cement ratio with curing time. These investigation results showed that the electric conductivity of grout is much higher than that of water and that the apparent resistivity of grouted region is much lower than that of unoccupied region by grout. It was founded that electrical resistivity survey might be quite effective to detect grout region in dike. As the results of electrical resistivity sounding at three dikes, apparent resistivities after grouting showed several tens to several hundreds of ohm-m which were lower than those of pre-grouting and showed stabilizing trend with curing time. From these results, we could estimate that this behavior of apparent resistivity is due to increasing strength with curing time.

Spatial analysis of small-loop electromagnetic survey data in a seawater intrusion region (해수침투 지역에서 소형루프 전자탐사 자료의 공간 분석)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.114-120
    • /
    • 2006
  • The main purpose of this study is to apply spatial analysis using semivariograms to small-loop electromagnetic survey data to assess the extent of seawater intrusion in an experimental watershed. To indicate the extent of seawater intrusion over the study area, vertical electrical soundings at 33 points and electrical conductivity logging in two wells were conducted. From the correlation between resistivities obtained by inversion and the depth of the aquifer at the two wells, the region of seawater intrusion was identified and demonstrated by electrical conductivity logging results obtained over two years. To measure the variation of apparent conductivity with depth, an electromagnetic survey in six frequency bands was adopted. Apparent conductivity mapping with spatial analysis using semivariograms is an effective technique for identifying the region of seawater intrusion at shallow depth.

Relationship of soil profile strength and apparent soil electrical conductivity to crop yield (실시간 포장에서 측정한 토양 경도 및 전자장 유도 전기전도도와 작물수량과의 관계)

  • Jung, Won-Kyo;Kitchen, Newell R.;Sudduth, Kenneth A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.109-115
    • /
    • 2006
  • Understanding characteristics of claypan soils has long been an issue for researchers and farmers because the high-clay subsoil has a pronounced effect on grain crop productivity. The claypan restricts water infiltration and storage within the crop root zone, but these effects are not uniform within fields. Conventional techniques of identifying claypan soil characteristics require manual probing and analysis which can be quite expensive; an expense most farmers are unwilling to pay. On the other hand, farmers would be very interested if this information could be obtained with easy-to-use field sensors. Two examples of sensors that show promise for helping in claypan soil characterization are soil profile strength sensing and bulk soil apparent electrical conductivity (ECa). Little has been reported on claypan soils relating the combined information from these two sensors with grain crop yield. The objective of this research was to identify the relationships of sensed profile soil strength and soil EC with nine years of crop yield (maize and soybean) from a claypan soil field in central Missouri. A multiple-probe (five probes on 19-cm spacing) cone penetrometer was used to measure soil strength and an electromagnetic induction sensor was used to measure soil EC at 55 grid site locations within a 4-ha research field. Crop yields were obtained using a combine equipped with a yield monitoring system. Soil strength at the 15 to 45 cm soil depth were significantly correlated to crop yield and ECa. Estimated crop yields from apparent electrical conductivity and soil strength were validated with an independent data set. Using measurements from these two sensors, standard error rates for estimating yield ranged from 9 to 16%. In conclusion, these results showed that the sensed profile soil strength and soil EC could be used as a measure of the soil productivity for grain crop production.

Electrical properties of (Na0.5Bi0.5)(Zr0.75Ti0.25)O3 ceramic

  • Lily, Lily;Yadav, K.L.;Prasad, K.
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Lead-free compound $(Na_{0.5}Bi_{0.5})(Zr_{0.75}Ti_{0.25})O_3$ was prepared using conventional ceramic technique at $1070^{\circ}C$/4h in air atmosphere. X-ray diffraction analysis showed the formation of single-phase orthorhombic structure. Permittivity data showed low temperature coefficient of capacitance ($T_{CC}{\approx}5%$) up to $100^{\circ}C$. Complex impedance studies indicated the presence of grain boundary effect, non-Debye type dielectric relaxation and evidences of a negative temperature coefficient of resistance. The ac conductivity data were used to evaluate the density of states at Fermi level and apparent activation energy of the compound.

Current Saturation in the Electrical Resistivity Method (전기비저항탐사에서 전류포화현상)

  • Kang, Hye-Jin;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.370-377
    • /
    • 2010
  • In this study, we investigated the current saturation which forces the apparent resistivity to converge when the conductivity contrast between the anomalous body and background medium is greater than a specific value. Analizing theoretical and numerical solutions for some simple models, we studied the behavior of the surface charge, and how the surface charge cause the current saturation and finally lead to the convergence of the apparent resistivity in the resistivity method. As a consequence of above analysis, we verified that the current saturation makes the apparent resistivity converge to a specific value and the magnitude of the apparent resistivity anomaly be less than that of the ideal conductor or insulator in the resistivity method. In general, current saturation is considered to occur when the conductivity contrast becomes larger than 100.

Structural and electrical properties of perovskite Ba(Sm1/2Nb1/2)O3-BaTiO3 ceramic

  • Nath, K. Amar;Prasad, K.
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.115-128
    • /
    • 2012
  • The structural and electrical properties of $(1-x)Ba(Sm_{1/2}Nb_{1/2})O_3-xBaTiO_3$; ($0{\leq}x{\leq}1$) ceramics were prepared by conventional ceramic technique at $1375^{\circ}C$/7 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were derived from the X-ray diffraction (XRD) data using FullProf software whereas crystallite size and lattice strain were estimated from Williamson-Hall approach. XRD analysis of the compound indicated the formation of a single-phase cubic structure with the space group Pm m. Dielectric study revealed that the compound $0.75Ba(Sm_{1/2}Nb_{1/2})O_3-0.25BaTiO_3$ is having low and ${\varepsilon}^{\prime}$ and ${\varepsilon}^{{\prime}{\prime}}$ a low $T_{CC}$ (< 5%) in the working temperature range (up to+$100^{\circ}C$) which makes this composition suitable for capacitor application and may be designated as 'Stable Low-K' Class I material as per the specifications of the Electronic Industries Association. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in the system. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compounds.

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar;Prasad, K.;Chandra, K.P.;Kulkarni, A.R.
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-131
    • /
    • 2013
  • Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

The Influence of Calcining and Sintering Conditions on the Properties of $YBa_2Cu_3O_{7-x}$ Superconducting Ceramics Prepared by the Polymeric Precursor Process (Polymeric Precursor법으로 제조한 $YBa_2Cu_3O_{7-x}$초전도세라믹스의 특성에 대한 하소 및 소결조건의 영향)

  • 석상일;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.37-45
    • /
    • 1991
  • The critical current density, electrical conductivity, critical magnetic field, Meissner effect, apparent density, and microstructure of YBa2Cu3O7-x ceramic superconductor prepared by polymeric precursor, while varing calcining and sintering conditions, were investigated. The best superconducting properties could be obtained from the body sintered at 93$0^{\circ}C$ for 10h after calcining at 90$0^{\circ}C$ for 10h, which gave 383A/$\textrm{cm}^2$ of critical current density(Jc), 96K of onset temperature(Tonset), 94. 8K of zero temperature (Tzero) 225 Oe of critical magnetic field (Hc1), 72.8% of superconducting volume fraction measured by Meissner effect and 6.28g/㎤ of apparent density.

  • PDF

Effect of H2 Addition on the Properties of Transparent Conducting Oxide Films Deposited by Co-sputtering of ITO and AZO (동시 스퍼터링으로 제조한 AZO-ITO 혼합박막의 증착 중 수소 혼입 영향 분석)

  • Kim, Hye-Ri;Kim, Dong-Ho;Lee, Sung-Hun;Lee, Gun-Hwan
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.6
    • /
    • pp.267-271
    • /
    • 2009
  • Multicomponent transparent conducting oxide films were deposited on glass substrates at 150 by dual magnetron sputtering of AZO and ITO targets. In the case of mixing a limited amount of ITO (10W), resistivity of TCO films was significantly increased compared to the AZO film; from $3.5{\times}10^{-3}$ to $9.7{\times}10^{-3}{\Omega}{\cdot}cm$. Deterioration of the electrical conductivity is attributed to the decreases in carrier concentration and Hall mobility. Improvement of the conductivity could be obtained for the films prepared with ITO powers larger than 40 W. The lowest resistivity ($\rho$) of $7.3{\times}10^{-4}{\Omega}{\cdot}cm$ was achieved when ITO power was 100 W. Effects of $H_2$ incorporation on the electrical and optical properties of AZO-ITO films were investigated in this work. Addition of small amount of hydrogen resulted in the increase of carrier concentration and the improvement of electrical conductivity. It is apparent that the roughness of AZO-ITO films decreases dramatically after the transition of microstructure from polycrystalline to amorphous phase, which gives practical advantages such as an excellent uniformity of surface and a high etching rate. AZO-ITO films grown at sputtering ambient with hydrogen gas are expected to be applicable to optoelectronic devices such as organic light emitting diodes and flexible displays due to their sufficient electrical and structural properties.

The Effect of the Activation of Phosphoric Ester Cellulose Particles on the Electrotheological Properties of Anhydrous ER Fluids (인산 에스테르 반응 셀룰로오스 미립자의 활성화가 비수계 ER 유체의 전기유변학적 특성에 미치는 영향)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.7-16
    • /
    • 1998
  • The electrorheological (ER) behavior of suspensions in silicone oil of phosphoric ester cellulose powder (average particle size: 17.77 $\mu$m) was investigated at room temperature with electric fields up to 2.5 KV/mm. For development of anhydrous ER suspensions using at wide temperature range, we aimed to know the effect of activation of phosphoric ester cellulose particles on the ER activities. As a first step, the anhydrous ER suspensions mixing with the phosphoric ester cellulose particles which were treated with 2M phosporic acid and 4M urea were measured. After activating the anhydrous ER suspensions at 12$0^{\circ}C$, not only the analysis of dispersing cellulose particles which were reacted by phosphoric ester but also the electrorheological characteristics of ER suspensions such as dielectric constant, current density, electrical conductivity and rheological properties were studied. From the experimental results, the activation of phosphoric ester cellulose particles had an influence on the ER properties of anhydrous ER suspensions. As the activation time went by, the size and number of dispersing particles, the electrical properties and the initial apparent viscosity $(η_0)$ of ER suspensions were increased till the activation time passed 5 hours. Also, it was possible, the electrorheological effect $($\tau$/$\tau$_0)$ of ER fluids was grown by the activation of phosphoric ester cellulose particles.