Mutation of Angiogenesis Inhibitor TK1-2 to Avoid Antigenicity In Vivo

  • Lee Sang-Bae (Department of Biomedical Sciences, Cancer Research Institute, The Catholic University of Korea) ;
  • Kim Hyun-Kyung (Department of Biomedical Sciences, Cancer Research Institute, The Catholic University of Korea) ;
  • Oh Ho-Kyun (Department of Biomedical Sciences, Cancer Research Institute, The Catholic University of Korea) ;
  • Hong Yong-Kil (Department of Biomedical Sciences, Cancer Research Institute, The Catholic University of Korea) ;
  • Joe Young-Ae (Department of Biomedical Sciences, Cancer Research Institute, The Catholic University of Korea)
  • Published : 2006.03.01

Abstract

Tissue-type plasminogen activator (t-PA) is a multidomain serine protease containing two kringle domains, TK1-2. Previously, Pichia-derived recombinant human TK1-2 has been reported as an angiogenesis inhibitor although t-PA plays an important role in endothelial and tumor cell invasion. In this work, in order to improve in vivo efficacy of TK1-2 through elimination of immune reactivity, we mutated wild type TK1-2 into non-glycosylated form (NE-TK1-2) and examined whether it retains anti-angiogenic activity. The plasmid expressing NE-TK1-2 was constructed by replacing $Asn^{l17}\;and\;Asn^{184}$ with glutamic acid residues. After expression in Pichia pastoris, the secreted protein was purified from the culture broth using S-sepharose and UNO S1-FPLC column. The mass spectrum of NE-TK1-2 showed closely neighboring two peaks, 19631.87 and 19,835.44 Da, and it migrated as one band in SDS-PAGE. The patterns of CD-spectra of these two proteins were almost identical. Functionally, purified NE-TK1-2 was shown to inhibit endothelial cell migration in response to bFGF stimulation at the almost same level as wild type TK1-2. Therefore, the results suggest that non-glycosylated NETK1-2 can be developed as an effective anti-angiogenic and anti-tumor agent devoid of immune reactivity.

Keywords

References

  1. Aoki, S., Shimizu, N., Shimonishi, M., Kitagawa, M., Okumura, K., and Tanigawara, Y. (2001). Influence of sugar chain on fibrin affinity of recombinant t-PA. Biol Pharm Bull 24, 295-298 https://doi.org/10.1248/bpb.24.295
  2. Asselbergs, F. A., Burgi, R., and van Oostrum, J. (1993). Functional effects of kringle 2 glycosylation in a hybrid plasminogen activator. Blood Coagul Fibrinolysis 4, 27-33 https://doi.org/10.1097/00001721-199304010-00005
  3. Ballou, C. E. (1990). Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185, 440-470 https://doi.org/10.1016/0076-6879(90)85038-P
  4. Bause, E. (1983). Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209, 331-336 https://doi.org/10.1042/bj2090331
  5. Bennett, W. F., Paoni, N. F., Keyt, B. A., Botstein, D., Jones, A. J., Presta, L., Wurm, F. M., and Zoller, M. J. (1991). High resolution analysis of functional determinants on human tissue-type plasminogen activator. J Biol Chem 266, 5191-5201
  6. Berg, D. T., Burck, P. J., Berg, D. H., and Grinnell, B. W. (1993). Kringle glycosylation in a modified human tissue plasminogen activator improves functional properties. Blood 81, 1312-1322
  7. Berg, D. T., and Grinnell, B. W. (1993). Pro to Gly (P219G) in a silent glycosylation site results in complete glycosylation in tissue plasminogen activator. Protein Sci 2, 126-127
  8. Browder, T., Folkman, J., and Pirie-Shepherd, S. (2000). The Hemostatic System as a Regulator of Angiogenesis. J. Biol. Chem. 275, 1521-1524 https://doi.org/10.1074/jbc.275.3.1521
  9. Elliott, S., Chang, D., Delorme, E., Eris, T., and Lorenzini, T. (2004). Structural Requirements for Additional N-Linked Carbohydrate on Recombinant Human Erythropoietin. J. Biol. Chem. 279, 16854-16862 https://doi.org/10.1074/jbc.M311095200
  10. Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med. 285, 1182-1186 https://doi.org/10.1056/NEJM197111182852108
  11. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1, 27-31 https://doi.org/10.1038/nm0195-27
  12. Folkman, J., and D'Amore, P. A. (1996). Blood Vessel Formation: What Is Its Molecular Basis? Cell 87, 1153-1155 https://doi.org/10.1016/S0092-8674(00)81810-3
  13. Hamilton, S. R., Bobrowicz, P., Bobrowicz, B., Davidson, R. C., Li, H., Mitchell, T., Nett, J. H., Rausch, S., Stadheim, T. A., Wischnewski, H., Wildt, S., and Gemgross, T. U. (2003). Production of complex human glycoproteins in yeast. Science 301, 1244-1246
  14. Hanahan, D. (1997). CELL BIOLOGY: Signaling Vascular Morphogenesis and Maintenance. Science 277, 48-50 https://doi.org/10.1126/science.277.5322.48
  15. Hanahan, D., and Folkman, J. (1996). Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell 86, 353-364 https://doi.org/10.1016/S0092-8674(00)80108-7
  16. Helenius, A., and Aebi, M. (2001). Intracellular functions of Nlinked glycans. Science 291, 2364-2369 https://doi.org/10.1126/science.291.5512.2364
  17. Imperiali, B., and O'Connor, S. E. (1999). Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol 3, 643-649 https://doi.org/10.1016/S1367-5931(99)00021-6
  18. Imperiali, B., and Shannon, K. L. (1991). Differences between Asn-Xaa-Thr-containing peptides: a comparison of solution conformation and substrate behavior with oligosaccharyltransferase. Biochemistry 30, 4374-4380 https://doi.org/10.1021/bi00232a002
  19. Ingber, D. E., and Folkman, J. (1989). How does extracellular matrix control capillary morphogenesis? Cell 58, 803-805 https://doi.org/10.1016/0092-8674(89)90928-8
  20. Jaffe, E. A., Nachman, R. L., Becker, C. G., and Minick, C. R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52, 2745-2756 https://doi.org/10.1172/JCI107470
  21. Khanna, R., Myers, M. P., Laine, M., and Papazian, D. M. (2001). Glycosylation Increases Potassium Channel Stability and Surface Expression in Mammalian Cells. J. Biol. Chem. 276, 34028-34034 https://doi.org/10.1074/jbc.M105248200
  22. Kim, HK, Lee, SY, Oh, HK, Kang, BH, Ku, HJ, Lee, Y, Shin, JY, Hong YK, and Joe YA, (2003). Inhibition of endothelial cell proliferation by the recombinant kringle domain of tissuetype plasminogen activator. Biochem Biophys Res Commun. 304, 740-746 https://doi.org/10.1016/S0006-291X(03)00656-9
  23. Larsen, G. R., Henson, K., and Blue, Y. (1988). Variants of human tissue-type plasminogen activator. Fibrin binding, fibrinolytic, and fibrinogenolytic characterization of genetic variants lacking the fibronectin finger-like and/or the epidermal growth factor domains. J Biol Chem 263, 1023-1029
  24. Narhi, L. O., Arakawa, T., Aoki, K. H., Elmore, R., Rohde, M. F., Boone, T., and Strickland, T. W. (1991). The effect of carbohydrate on the structure and stability of erythropoietin. J Biol Chem 266, 23022-23026
  25. Risau W. (1997). Mechanisms of angiogenesis. Nature. 386, 671-674 https://doi.org/10.1038/386671a0
  26. Roitsch, T., and Lehle, L. (1989). Structural requirements for protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast invertase and site-directed mutagenesis around a sequon sequence. Eur J Biochem 181, 525-529 https://doi.org/10.1111/j.1432-1033.1989.tb14755.x
  27. Sage, EH. (1997). Pieces of eight: bioactive fragments of extracellular proteins as regulators of angiogenesis. Trends Cell Biol 7, 182-186 https://doi.org/10.1016/S0962-8924(97)01037-4
  28. Shim, BS, Kang, BH, Hong, YK, Kim, HK, Lee, IH, Lee, SY, Lee, YJ, Lee, SK, and Joe, YA. (2005). The kringle domain of tissue-type plasminogen activator inhibits in vivo tumor growth. Biochem Biophys Res Commun. 327, 1155-1162 https://doi.org/10.1016/j.bbrc.2004.12.126
  29. Stack, M. S., Gately, S., Bafetti, L. M., Enghild, J. J., and Soff, G. A. (1999). Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J 340, 77-84 https://doi.org/10.1042/0264-6021:3400077
  30. Wilhelm, J., Kalyan, N. K., Lee, S. G., Hum, W. T., Rappaport, R., and Hung, P. P. (1990). Deglycosylation increases the fibrinolytic activity of a deletion mutant of tissue-type plasminogen activator. Thromb Haemost 63, 464-471 https://doi.org/10.1055/s-0038-1645067
  31. Wujek, P., Kida, E., Walus, M., Wisniewski, K. E., and Golabek, A. A. (2004). N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I. J Biol Chem 279, 12827-12839 https://doi.org/10.1074/jbc.M313173200