Distinct Effects of Lysophospholipids on Membrane Potential in C6 Glioma Cells

  • Lee Yun-Kyung (Laboratory of Pharmacology, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Im Dong-Soon (Laboratory of Pharmacology, College of Pharmacy and Research Institute for Drug Development, Pusan National University)
  • Published : 2006.03.01

Abstract

We tested effects of bioactive lysophospholipids including lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), sphingosylphosphorylcholine (SPC), and sphingosine I-phosphate (S1P) on membrane potential in C6 glioma cells to understand action mechanism of the lysophospholipids. Membrane potential was estimated by measuring fluorescence change of DiBAC-loaded glioma cells. LPA largely increased membrane potential and the increase was gradually diminished. LPC also increased the membrane potential, however, the increase sustained. SPC induced smaller increase of membrane potential than LPC. SIP was not able to change the membrane potential. We tested effects of suramin and pertussis toxin on lysophospholipid-induced membrane potential increase. However, there wasn't any effect. The membrane potential increase was partially diminished in $Na^+$-free media, suggesting $Na^+$ influx as a component of membrane potential changes. Thus, involvement of $Na^+$ influx in the increase of membrane potential by lysophospholipids and independence of suramin-sensitive GPCRs and pertussis toxin-sensitive G proteins are found in this study.

Keywords

References

  1. Cechin, S. R., Dunkley, P. R. and Rodnight, R. (2005). Signal transduction mechanisms involved in the proliferation of C6 glioma cells induced by lysophosphatidic acid. Neurochem Res 30, 603-11 https://doi.org/10.1007/s11064-005-2747-4
  2. Hasegawa, Y., Erickson, J. R., Goddard, G. J., Yu, S., Liu, S., Cheng, K. W., Eder, A., Bandoh, K., Aoki, J., Jarosz, R., Schrier, A. D., Lynch, K. R., Mills, G. B. and Fang, X. (2003). Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J Biol Chem 278, 11962-9 https://doi.org/10.1074/jbc.M209168200
  3. Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. and Kluk, M. J. (2001). Lysophospholipids--receptor revelations. Science 294, 1875-8 https://doi.org/10.1126/science.1065323
  4. Ignatov, A., Lintzel, J., Hermans-Borgmeyer, I., Kreienkamp, H. J., Joost, P., Thomsen, S., Methner, A. and Schaller, H. C. (2003). Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development. J Neurosci 23, 907-14 https://doi.org/10.1523/JNEUROSCI.23-03-00907.2003
  5. Ikeda, H., Satoh, H., Yanase, M., Inoue, Y, Tomiya, T., Arai, M., Tejima, K., Nagashima, K., Maekawa, H., Yahagi, N., Yatomi, Y, Sakurada, S., Takuwa, Y., Ogata, I., Kimura, S. and Fujiwara, K. (2003). Antiproliferative property of sphingosine 1phosphate in rat hepatocytes involves activation of Rho via Edg-5. Gastroenterology 124, 459-69 https://doi.org/10.1053/gast.2003.50049
  6. Im, D. S. (2003). Linking Chinese medicine and G-protein-coupled receptors. Trends Pharmacol Sci 24, 2-4 https://doi.org/10.1016/S0165-6147(02)00012-3
  7. Im, D.S. (2004). Discovery of new G protein-coupled receptors for lipid mediators. J Lipid Res 45, 410-8 https://doi.org/10.1194/jlr.R300006-JLR200
  8. Im, D. S., Fujioka, T, Katada, T, Kondo, Y, Ui, M. and Okajima, F. (1997). Characterization of sphingosine 1-phosphateinduced actions and its signaling pathways in rat hepatocytes. Am J Physiol 272, G1091-9
  9. Ishiuchi, S., Tsuzuki, K., Yoshida, Y., Yamada, N., Hagimura, N., Okado, H., Miwa, A., Kurihara, H., Nakazato, Y, Tamura, M., Sasaki, T and Ozawa, S. (2002). Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8, 971-8 https://doi.org/10.1038/nm746
  10. Kimura, T., Watanabe, T., Sato, K., Kon, J., Tomura, H., Tamama, K., Kuwabara, A., Kanda, T, Kobayashi, I., Ohta, H., Ui, M. and Okajima, F. (2000). Sphingosine I-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-l and Edg-3. Biochem J 348 Pt 1, 71-6 https://doi.org/10.1042/0264-6021:3480071
  11. Lynch, K. R. and Im, D. S. (1999). Life on the edg. Trends Pharmacol Sci 20, 473-5 https://doi.org/10.1016/S0165-6147(99)01401-7
  12. Malchinkhuu, E., Sato, K., Horiuchi, Y, Mogi, C., Ohwada, S., Ishiuchi, S., Saito, N., Kurose, H., Tomura, H. and Okajima, F. (2005). Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid and sphingosine-1-phosphate in glioma cells. Oncogene 24, 667-688
  13. Manning, T. J., Jr., Parker, J. C. and Sontheimer, H. (2000). Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton 45, 185-99 https://doi.org/10.1002/(SICI)1097-0169(200003)45:3<185::AID-CM2>3.0.CO;2-G
  14. Noguchi, K., Ishii, S. and Shimizu, T. (2003). Identification of p2y9/GPR23 as a novel G protein-coupled receptor for Lysophosphatidic acid, structurally distant from the Edg family. J Bioi Chem 278, 25600-25606 https://doi.org/10.1074/jbc.M302648200
  15. Ohta, H., Sato, K., Murata, N., Damirin, A., Malchinkhuu, E., Kon, J., Kimura, T., Tobo, M., Yamazaki, Y., Watanabe, T., Yagi, M., Sato, M., Suzuki, R., Murooka, H., Sakai, T., Nishitoba, T., Im, D. S., Nochi, H., Tamoto, K., Tomura, H. and Okajima, F. (2003). KiI6425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol 64, 994-1005 https://doi.org/10.1124/mol.64.4.994
  16. Park, K. S., Lee, H. Y., Kim, M. K., Shin, E. H., Jo, S. H., Kim, S. D., Im, D. S. and Bae, Y. S. (2006). Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric G proteins. Mol Pharmacol 69, 1066-1073
  17. Reetz, G. and Reiser, G. (1996). [Ca2+]i oscillations induced by bradykinin in rat glioma cells associated with Ca2+ storedependent Ca2+ influx are controlled by cell volume and by membrane potential. Cell Calcium 19, 143-56 https://doi.org/10.1016/S0143-4160(96)90083-4
  18. Sato, K., Ui, M. and Okajima, F. (2000). Differential roles of Edg-I and Edg-5, sphingosine I-phosphate receptors, in the signaling pathways in C6 glioma cells. Brain Res Mol Brain Res 85, 151-60 https://doi.org/10.1016/S0169-328X(00)00262-X
  19. Segura, B. J., Zhang, W., Xiao, L., Logsdon, C. D. and Mulholland, M. W. (2005). Sphingosine-I-phosphate induces early response gene expression in C6 glioma cells. Brain Res Mol Brain Res 133,325-8 https://doi.org/10.1016/j.molbrainres.2004.10.016
  20. Soga, T., Ohishi, T., Matsui, T., Saito, T., Matsumoto, M., Takasaki, J., Matsumoto, S., Karnohara, M., Hiyama, H., Yoshida, S., Momose, K., Ueda, Y., Matsushime, H., Kobori, M. and Furuichi, K (2005). Lysophosphatidylcholine enhances glucose dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun 326, 744-51 https://doi.org/10.1016/j.bbrc.2004.11.120
  21. Steiner, M. R., Urso, J. R., Klein, J. and Steiner, S. M. (2002). Multiple astrocyte responses to lysophosphatidic acids. Biochim Biophys Acta 1582, 154-60 https://doi.org/10.1016/S1388-1981(02)00150-6
  22. Tas, P. W. and Koschel, K. (1998). Sphingosine-I-phosphate induces a Ca2+ signal in primary rat astrocytes and a Ca2+ signal and shape changes in C6 rat glioma cells. J Neurosci Res 52, 427-34 https://doi.org/10.1002/(SICI)1097-4547(19980515)52:4<427::AID-JNR6>3.0.CO;2-B
  23. Uhlenbrock, K., Gassenhuber, H. and Kostenis, E. (2002). Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 14, 941-53 https://doi.org/10.1016/S0898-6568(02)00041-4
  24. Van Brocklyn, J., Letterle, c., Snyder, P. and Prior, T. (2002). Sphingosine-I-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta. Cancer Lett 181, 195-204 https://doi.org/10.1016/S0304-3835(02)00050-2
  25. VandenBerg, S. R. (1992). Current diagnostic concepts of astrocytic tumors. J Neuropathol Exp Neurol 51, 644-57 https://doi.org/10.1097/00005072-199211000-00008
  26. Wei, S. H., Rosen, H., Matheu, M. P., Sanna, M. G., Wang, S. K., Jo, E., Wong, C. H., Parker, I. and Cahalan, M. D. (2005). Sphingosine I-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 6, 1228-35 https://doi.org/10.1038/ni1269
  27. Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L. M., Xiao, Y. and Damron, D. S. (2000). Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol 2, 261-7 https://doi.org/10.1038/35010529
  28. Zhu, K., Baudhuin, L. M., Hong, G., Williams, F. S., Cristina, K. L., Kabarowski, J. H., Witte, O. N. and Xu, Y. (2001). Sphingosylphosphorylcholine and Iysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J Biol Chem 276, 41325-35 https://doi.org/10.1074/jbc.M008057200
  29. Zumwalt, J. W., Thunstrom, B. J. and Spangelo, B. L. (1999). Interleukin-l beta and catecholamines synergistically stimulate interleukin-6 release from rat C6 glioma cells in vitro: a potential role for Iysophosphatidylcholine. Endocrinology 140, 888-96 https://doi.org/10.1210/en.140.2.888