References
- Cechin, S. R., Dunkley, P. R. and Rodnight, R. (2005). Signal transduction mechanisms involved in the proliferation of C6 glioma cells induced by lysophosphatidic acid. Neurochem Res 30, 603-11 https://doi.org/10.1007/s11064-005-2747-4
- Hasegawa, Y., Erickson, J. R., Goddard, G. J., Yu, S., Liu, S., Cheng, K. W., Eder, A., Bandoh, K., Aoki, J., Jarosz, R., Schrier, A. D., Lynch, K. R., Mills, G. B. and Fang, X. (2003). Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J Biol Chem 278, 11962-9 https://doi.org/10.1074/jbc.M209168200
- Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. and Kluk, M. J. (2001). Lysophospholipids--receptor revelations. Science 294, 1875-8 https://doi.org/10.1126/science.1065323
- Ignatov, A., Lintzel, J., Hermans-Borgmeyer, I., Kreienkamp, H. J., Joost, P., Thomsen, S., Methner, A. and Schaller, H. C. (2003). Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development. J Neurosci 23, 907-14 https://doi.org/10.1523/JNEUROSCI.23-03-00907.2003
- Ikeda, H., Satoh, H., Yanase, M., Inoue, Y, Tomiya, T., Arai, M., Tejima, K., Nagashima, K., Maekawa, H., Yahagi, N., Yatomi, Y, Sakurada, S., Takuwa, Y., Ogata, I., Kimura, S. and Fujiwara, K. (2003). Antiproliferative property of sphingosine 1phosphate in rat hepatocytes involves activation of Rho via Edg-5. Gastroenterology 124, 459-69 https://doi.org/10.1053/gast.2003.50049
- Im, D. S. (2003). Linking Chinese medicine and G-protein-coupled receptors. Trends Pharmacol Sci 24, 2-4 https://doi.org/10.1016/S0165-6147(02)00012-3
- Im, D.S. (2004). Discovery of new G protein-coupled receptors for lipid mediators. J Lipid Res 45, 410-8 https://doi.org/10.1194/jlr.R300006-JLR200
- Im, D. S., Fujioka, T, Katada, T, Kondo, Y, Ui, M. and Okajima, F. (1997). Characterization of sphingosine 1-phosphateinduced actions and its signaling pathways in rat hepatocytes. Am J Physiol 272, G1091-9
- Ishiuchi, S., Tsuzuki, K., Yoshida, Y., Yamada, N., Hagimura, N., Okado, H., Miwa, A., Kurihara, H., Nakazato, Y, Tamura, M., Sasaki, T and Ozawa, S. (2002). Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8, 971-8 https://doi.org/10.1038/nm746
- Kimura, T., Watanabe, T., Sato, K., Kon, J., Tomura, H., Tamama, K., Kuwabara, A., Kanda, T, Kobayashi, I., Ohta, H., Ui, M. and Okajima, F. (2000). Sphingosine I-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-l and Edg-3. Biochem J 348 Pt 1, 71-6 https://doi.org/10.1042/0264-6021:3480071
- Lynch, K. R. and Im, D. S. (1999). Life on the edg. Trends Pharmacol Sci 20, 473-5 https://doi.org/10.1016/S0165-6147(99)01401-7
- Malchinkhuu, E., Sato, K., Horiuchi, Y, Mogi, C., Ohwada, S., Ishiuchi, S., Saito, N., Kurose, H., Tomura, H. and Okajima, F. (2005). Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid and sphingosine-1-phosphate in glioma cells. Oncogene 24, 667-688
- Manning, T. J., Jr., Parker, J. C. and Sontheimer, H. (2000). Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton 45, 185-99 https://doi.org/10.1002/(SICI)1097-0169(200003)45:3<185::AID-CM2>3.0.CO;2-G
- Noguchi, K., Ishii, S. and Shimizu, T. (2003). Identification of p2y9/GPR23 as a novel G protein-coupled receptor for Lysophosphatidic acid, structurally distant from the Edg family. J Bioi Chem 278, 25600-25606 https://doi.org/10.1074/jbc.M302648200
- Ohta, H., Sato, K., Murata, N., Damirin, A., Malchinkhuu, E., Kon, J., Kimura, T., Tobo, M., Yamazaki, Y., Watanabe, T., Yagi, M., Sato, M., Suzuki, R., Murooka, H., Sakai, T., Nishitoba, T., Im, D. S., Nochi, H., Tamoto, K., Tomura, H. and Okajima, F. (2003). KiI6425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol 64, 994-1005 https://doi.org/10.1124/mol.64.4.994
- Park, K. S., Lee, H. Y., Kim, M. K., Shin, E. H., Jo, S. H., Kim, S. D., Im, D. S. and Bae, Y. S. (2006). Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric G proteins. Mol Pharmacol 69, 1066-1073
- Reetz, G. and Reiser, G. (1996). [Ca2+]i oscillations induced by bradykinin in rat glioma cells associated with Ca2+ storedependent Ca2+ influx are controlled by cell volume and by membrane potential. Cell Calcium 19, 143-56 https://doi.org/10.1016/S0143-4160(96)90083-4
- Sato, K., Ui, M. and Okajima, F. (2000). Differential roles of Edg-I and Edg-5, sphingosine I-phosphate receptors, in the signaling pathways in C6 glioma cells. Brain Res Mol Brain Res 85, 151-60 https://doi.org/10.1016/S0169-328X(00)00262-X
- Segura, B. J., Zhang, W., Xiao, L., Logsdon, C. D. and Mulholland, M. W. (2005). Sphingosine-I-phosphate induces early response gene expression in C6 glioma cells. Brain Res Mol Brain Res 133,325-8 https://doi.org/10.1016/j.molbrainres.2004.10.016
- Soga, T., Ohishi, T., Matsui, T., Saito, T., Matsumoto, M., Takasaki, J., Matsumoto, S., Karnohara, M., Hiyama, H., Yoshida, S., Momose, K., Ueda, Y., Matsushime, H., Kobori, M. and Furuichi, K (2005). Lysophosphatidylcholine enhances glucose dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun 326, 744-51 https://doi.org/10.1016/j.bbrc.2004.11.120
- Steiner, M. R., Urso, J. R., Klein, J. and Steiner, S. M. (2002). Multiple astrocyte responses to lysophosphatidic acids. Biochim Biophys Acta 1582, 154-60 https://doi.org/10.1016/S1388-1981(02)00150-6
- Tas, P. W. and Koschel, K. (1998). Sphingosine-I-phosphate induces a Ca2+ signal in primary rat astrocytes and a Ca2+ signal and shape changes in C6 rat glioma cells. J Neurosci Res 52, 427-34 https://doi.org/10.1002/(SICI)1097-4547(19980515)52:4<427::AID-JNR6>3.0.CO;2-B
- Uhlenbrock, K., Gassenhuber, H. and Kostenis, E. (2002). Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 14, 941-53 https://doi.org/10.1016/S0898-6568(02)00041-4
- Van Brocklyn, J., Letterle, c., Snyder, P. and Prior, T. (2002). Sphingosine-I-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta. Cancer Lett 181, 195-204 https://doi.org/10.1016/S0304-3835(02)00050-2
- VandenBerg, S. R. (1992). Current diagnostic concepts of astrocytic tumors. J Neuropathol Exp Neurol 51, 644-57 https://doi.org/10.1097/00005072-199211000-00008
- Wei, S. H., Rosen, H., Matheu, M. P., Sanna, M. G., Wang, S. K., Jo, E., Wong, C. H., Parker, I. and Cahalan, M. D. (2005). Sphingosine I-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 6, 1228-35 https://doi.org/10.1038/ni1269
- Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L. M., Xiao, Y. and Damron, D. S. (2000). Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol 2, 261-7 https://doi.org/10.1038/35010529
- Zhu, K., Baudhuin, L. M., Hong, G., Williams, F. S., Cristina, K. L., Kabarowski, J. H., Witte, O. N. and Xu, Y. (2001). Sphingosylphosphorylcholine and Iysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J Biol Chem 276, 41325-35 https://doi.org/10.1074/jbc.M008057200
- Zumwalt, J. W., Thunstrom, B. J. and Spangelo, B. L. (1999). Interleukin-l beta and catecholamines synergistically stimulate interleukin-6 release from rat C6 glioma cells in vitro: a potential role for Iysophosphatidylcholine. Endocrinology 140, 888-96 https://doi.org/10.1210/en.140.2.888