Invertebrate Models Used for Characterization of Drug Dependence and Development of Anti-Drug Dependent Agents

  • Chang Hyun-Sook (Department of Child Studies, Korea Nazarene University) ;
  • Kim Ha-Won (Department of Life Sciences, University of Seoul) ;
  • Lee Dong-Hee (Department of Life Sciences, University of Seoul)
  • Published : 2006.03.01

Abstract

Drug dependence deals a heavy socioeconomic burden to the society. For adolescents, the damage from drug dependence is greater than adults considering their higher susceptibility to drug effect and increasing chance for violence leading to criminal punishment process. Habitual drug use depends on genetic and environmental factors and the complex interactions between the two. Mammalian model systems have been useful in understanding the neurochemical and cellular impacts of abused drugs on specific regions of the brain, and in identifying the molecular targets of drugs. More elucidation is required whether biological effects of drugs actually cause the habitual dependence at the cellular level. Although there is much insight available on the nature of drug abuse problems, none of the systems designed to help drug dependent individuals is efficient in screening functional ingredients of the drug, and thus resulting in the failure of helping drug dependent individuals recover from drug dependence. Alternative model systems draw the attention of researchers, such as the invertebrate model systems of nematodes (Caenorhabditis elegans) and fruit flies (Drosophila melanogaster). These models should provide new insight into the mechanisms leading to the behavior of drug users (even functional studies analyzing molecular mechanism), and screening useful components to help remove drug dependence among drug users. The relatively simple anatomy and gene expression of the invertebrate model systems should enable researchers to coordinate current knowledge on drug abuse. Furthermore, the invertebrate model systems should facilitate advance in experiments on the susceptibility of specific genetic backgrounds and the interaction between genetic factors to drug dependence.

Keywords

References

  1. Andretic, R. and Hirsh, J. (2000). Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 1873-1878
  2. Bainton, R. J., Tsai, L. T. -Y., Singh, C. M., Moore, M. S., Neckameyer, W.S. and Heberlein, U. (2000). Dopamine modulates acute responses to cocaine, nicotine, and ethanol in Drosophila. Curr. Biol. 10, 187-194 https://doi.org/10.1016/S0960-9822(00)00336-5
  3. Bargmann, C. I. (2001). High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. Genome BioI. 2, 1005.1-1005.4
  4. Berke, J. D. and Hyman, S. E. (2000). Dependence, dopamine, and the molecular mechanisms of memory. Neuron 25, 515-532 https://doi.org/10.1016/S0896-6273(00)81056-9
  5. Depiereux, E., Hougouto, N., Lechien, J., Libion-Mannaert, M. and Di Chiara, G. (2000). Role of dopamine in the behavioral actions of nicotine related to dependence. Eur. J. Pharmacol. 393, 295-314 https://doi.org/10.1016/S0014-2999(00)00122-9
  6. Dubnau, J., Grady, L., Kitamoto, T. and Tully, T. (2001). Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411, 476-480 https://doi.org/10.1038/35078077
  7. Dudley, R. (2000). Evolutionary origins of human alcoholism in primate frugivory. Q. Rev. Biol. 75, 3-15 https://doi.org/10.1086/393255
  8. Duerr, J. S., Gaskin, J. and Rand, J. B. (2002). Identified neurons in C. elegans coexpress vesicular transporters for acetylcholine and monoarnines. Am. J. Physiol. Cell Physiol. 280, 1616-1622
  9. Beckman, M. L., Parker, J. C., Sheffield, E. B., Whitworth, T. L., Quick, M. W. and Lester, R. A. (2000). Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C. Mol. Phannacol. 55, 432-443
  10. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811 https://doi.org/10.1038/35888
  11. Giorgetti, M. and Zhdanova, I. V. (2000). Chronic cocaine treatment induces dysregulation in the circadian pattern of rats $\circ\AE$feeding behavior. Brain Res. 877, 170-175 https://doi.org/10.1016/S0006-8993(00)02671-8
  12. Gomez, M., De Castro, E., Guarin, E., Sasakura, H., Kuhara, A., Mori, I., Bartfai, T., et al. (2001). Ca2signaling via the neuronal calcium sensor-l regulates associative learning and memory in C. elegans. Neuron 30, 241-248 https://doi.org/10.1016/S0896-6273(01)00276-8
  13. Kalidas, S. and Smith, D. P. (2002). Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33,177-184 https://doi.org/10.1016/S0896-6273(02)00560-3
  14. Kerr, R., Lev-Ram, V., Baird, G., Vincent, P., Tsien, R. Y. and Schafer, W. R. (2000). Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583-594 https://doi.org/10.1016/S0896-6273(00)81196-4
  15. Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol. 47, 81-92 https://doi.org/10.1002/neu.1018
  16. Lewohl, J. M., Wilson, W. R., Mayfield, R. D., Brozowski, S. J., Morrisett, R. A. and Harris, R. A. (1999). G-protein-coupled inwardly rectifying potassium channels are target of alcohol action. Nat. Neurosci. 2, 1084-1090 https://doi.org/10.1038/16012
  17. Martin, J-R, Raabe, T. and Heisenberg, M. (1999). Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A. 185, 277-288 https://doi.org/10.1007/s003590050387
  18. McClung, C. and Hirsh, J. (1998). Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila. Curr. Biol. 8, 109-112 https://doi.org/10.1016/S0960-9822(98)70041-7
  19. McClung, C. and Hirsh, J. (1999). The trace amine tyramine is essential for sensitization to cocaine in Drosophila. Curr. Biol. 9, 853-860 https://doi.org/10.1016/S0960-9822(99)80389-3
  20. Mori, I. (1999). Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annu. Rev. Genet. 33, 399-422 https://doi.org/10.1146/annurev.genet.33.1.399
  21. Morrison, G. E., Wen, Y. J., Runciman, S. and van der Kooy, D. (1999). Olfactory associative learning in Caenorhabditis elegans is impaired in lrn-l and Irn-2 mutants. Behav. Neurosci. 113,358-367 https://doi.org/10.1037/0735-7044.113.2.358
  22. Nikaido, T., Moriya, T., Takabayashi, R., Akigama, M. and Shibata, S. (1999). Sensitization of methamphetamine-induced disorganization of daily locomotor activity rhythm in male rats. Brain Res. 845, 112-116 https://doi.org/10.1016/S0006-8993(99)01955-1
  23. Osterwalder, T., Yoon, K. S., White, B. H. and Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. USA 98, 12596-12601
  24. Park, S. K., Sedore, S. A., Cronmiller, C. and Hirsh, J. (2000). PKARII- deficient Drosophila are viable but show developmental, circadian and drug response phenotypes. J. Biol. Chem. 275, 20588-20596 https://doi.org/10.1074/jbc.M002460200
  25. Parr, J., Large, A., Wang, X., Fowler, S. C., Ratzlaff, K. L. and Ruden, D. M. (2001). The inebri-actometer: a device for measuring the locomotor activity of Drosophila exposed to ethanol vapor. J. Neurosci. Methods 107, 93-99 https://doi.org/10.1016/S0165-0270(01)00357-0
  26. Porzgen, P., Park, S. K., Hirsh, J., Sonders, M. S. and Amara, S. G. (2001). The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines. Mol. Pharmacol. 59, 83-95 https://doi.org/10.1124/mol.59.1.83
  27. Ranganathan, R., Sawin, E. R., Trent, C. and Horvitz, H. R. (2001). Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J. Neurosci. 21, 5871-5884 https://doi.org/10.1523/JNEUROSCI.21-16-05871.2001
  28. Richmond, J. E. and Jorgensen, E. M. (1999). One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791-797 https://doi.org/10.1038/12160
  29. Risinger, F. O., Freeman, P. A., Rubinstein, M., Low, M. J. and Grandy, D. K. (2000). Lack of operant ethanol self-administration indopamine D2 receptor knockout mice. Psychophannacology (Berlin) 152, 343-350 https://doi.org/10.1007/s002130000548
  30. Robinson, T. E. and Berridge, K. C. (2001). Incentive-sensitization and dependence. Addiction 96, 103-114 https://doi.org/10.1046/j.1360-0443.2001.9611038.x
  31. Rocha, B. A., Fumagalli, F., Gainetdinov, R. R., Jones, S. R., Ator, R., Giros, B., Miller, G. W., et al. (1998). Cocaine self-administration in dopamine-transporter knockout mice. Nat. Neurosci. 1, 132-137 https://doi.org/10.1038/381
  32. Rodan, A. R., Kiger, J. A. and Heberlein, U. (2002). Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J. Neurosci., in press
  33. Roeder, T. (1999). Octopamine in invertebrates. Prog. Neurobiol. 59, 533-561 https://doi.org/10.1016/S0301-0082(99)00016-7
  34. Rosay, P., Armstrong, J. D., Wang, Z. and Kaiser, K. (2001). Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. Neuron 30, 759-770 https://doi.org/10.1016/S0896-6273(01)00323-3
  35. Scholz, H., Ramond, J., Singh, C. M. and Heberlein, U. (2000). Functional ethanol tolerance in Drosophila. Neuron 28, 261-271 https://doi.org/10.1016/S0896-6273(00)00101-X
  36. Schuckit, M. A. (2000). Genetics of the risk for alcoholism. Am. J. Addict. 9, 103-112 https://doi.org/10.1080/10550490050173172
  37. Sora, I., Hall, F. S., Andrews, A. M., Itokawa, M., Li, X. F., Wei, H. B., Wichems, C., et al. (2001). Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc. Natl. Acad. Sci. USA 98, 5300-5305
  38. Spanagel, R., Weiss, F.. (1999). The dopamine hypothesis of reward: past and current status. Trends Neurosci. 22, 521- 527 https://doi.org/10.1016/S0166-2236(99)01447-2
  39. Stebbins, M. J., Urlinger, S., Byrne, G., Bello, B., Hillen, W. and Yin, J. C. (2001). Tetracycline-inducible systems for Drosophila. Proc. Natl. Acad. Sci. USA 98, 10775-10780
  40. Thomas, J. H. (2001). Nematodes are smarter than you think. Neuron 30, 7-8 https://doi.org/10.1016/S0896-6273(01)00256-2
  41. Torres, G. and Horowitz, J. M. (1999). Cocaetylene synthesis in Drosophila. Neurosci. Letters 263, 201-204 https://doi.org/10.1016/S0304-3940(99)00156-1
  42. Torres, G. and Horowitz, J. M. (1999). Drugs of abuse and brain gene expression. Psychosomatic Medicine 61, 630-650 https://doi.org/10.1097/00006842-199909000-00007
  43. Wise, R. A. (2000). Dependence becomes a brain disease. Neuron 26, 27-33 https://doi.org/10.1016/S0896-6273(00)81134-4
  44. Wise, R. A. and Bozarth, M. A. (1987). A psychomotor stimulant theory of dependence. Psychol. Rev. 94, 469-492 https://doi.org/10.1037/0033-295X.94.4.469