해석적 기법을 이용한 초고압 GIS용 삼상모선의 온도분포 해석

Analysis of Temperature Distribution in EHV GIS Three-Phase Busbar Using Analytic Technique

  • 발행 : 2006.04.01

초록

This paper presents a new magneto-thermal finite element analysis for predicting the temperature rise of the EHV GIS busbar. Joule's heat due to current flowing in the main conductor and the heat due to the induced eddy current in the tank are calculated by the magnetic field analysis. And these heats are used as the input data to predict the temperature rise for the thermal analysis. However, it is not easy to apply the heat-transfer coefficients on the boundaries for the thermal analysis. In this paper, the heat-transfer coefficients on the boundaries are analytically calculated by applying the Nusselt number considering material constant and model geometry for the natural convection. The temperature distribution in the busbar by coupled magneto-thermal finite element analysis shows good agreement with the experimental data.

키워드

참고문헌

  1. 이경행, '초고압 전력기기의 기술동향', 대한전기학회지, 제46호, 제8호, pp. 23-30, 10월, 1997
  2. 한국전기연구소, '초고압 전력기기 기술개발을 위한 연구 기획', 통상산업부, 1997
  3. H. Sadakuni, K. Sasamori, H. Hama, K. Inami, 'Insulation and current carrying design for GIS', JIEE, pp.33-42, SP-96-12, 1996
  4. 여운동, 정의섭, 박경엽, '2003년 기술산업정보분석 : 초고압 GIS', 한국과학기술정보연구원, 2003
  5. M.Necati ozisik, 'Heat Transfer A Basic Approach', McGraw-Hill Publishing Company, 1990
  6. 이형직, '유한요소법에 의한 유체역학, 열전도 해석 입문', Pearson Education Korea, 2000
  7. Patrick H. Oosthuizen, 'Introduction to Convective Heat Transfer Analysis', McGraw-Hill, 1999
  8. Eric C. Guyer, 'Handbook of Applied Thermal Design', McGraw-HilI, pp.1-42-1-43, 1989
  9. M.Khalifaed, 'High Voltage Engineering', Chap10, Marcel Dekker, Inc. 1990, New York
  10. 기초전력공학공동연구소, '열전달 계수의 비선형성을 고려한 전력기기의 온도상승 예측', 산업자원부, 2002
  11. 한국전기연구원, '자연대류 효과를 고려한 초고압 GIS용 모선의 온도상승 예측 기술개발', 한국전기연구원, 2004
  12. W. Z. Black, B. A. Bush, Robert T. Coneybeer, 'Steady-state and transient ampacity of busbar', IEEE Trans. Power Delivery, VoI.9, No.4, pp. 1822-1829, October 1994 https://doi.org/10.1109/61.329515
  13. D. Labridis, V. Hatziathanassiou, 'Finite Element Computation of Field, Forces and Inductances in Underground $SF_6$ Insulated Cables Using a Coupled Magneto-Thermal Formulation', IEEE Trans. Magnetics, VoI.30, No.4, pp.1407-1415, July 1994 https://doi.org/10.1109/20.305540
  14. Wu Anbo, Chen Degui, 'Evaluation of Thermal Performance for Air-Insulated Busbar Trunking System by Coupled Magneto-Fluid-Thermall Fields', Power System Technology, Vol. 4, pp.l3-17, October 2002 https://doi.org/10.1109/ICPST.2002.1047164
  15. S. W. Kim, H. H. Kim, S. C. Hahn, 'Coupled finite-element-analytic technique for prediction of temperature rise in power apparatus', IEEE Trans. Magnetics, Vol.38, No.2, pp.921-924, March 2002 https://doi.org/10.1109/20.996237
  16. J. K. Kim, S. C. Hahn, 'Temperature Rise Prediction of EHV GIS Bus Bar by Coupled Magneto-Thermal Finite Element Method', IEEE Trans. Magnetics, Vol.41 , No.5, pp.1636-1639, MAY 2005 https://doi.org/10.1109/TMAG.2005.846117