신규 양성형 감광성 폴리암산의 합성 및 특성 연구

Synthesis and Characterization of New Positive Type Photosensitive Poly(amic acid)s

  • 심현보 (한국화학연구원 화학소재연구부) ;
  • 유영임 (한국화학연구원 화학소재연구부) ;
  • 이미혜 (한국화학연구원 화학소재연구부)
  • Sim Hyun-Bo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Yu Yeong-Im (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Yi Mi-Hye (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 발행 : 2006.03.01

초록

1,2,3,4-시클로부탄 테트라카복시산 이무수물과 4,4'-디아미노디페닐에테르(DDE)를 용액 중합 반응하여 폴리암산(PAA) 용액을 제조한 후, 1,2-에폭시-3-페녹시프로판과 반응시켜 폴리암산에스테르(PAE)를 합성하였다. 여기에 용해억제재로서 30 wt%의 디아조나프토퀴논 유도체(DI)를 첨가하였다. $365{\sim}400nm$의 파장에서 $200mJ/cm^2$의 자외광을 조사한 후, 0.95 wt%의 테트라메틸암모니움히드록사이드 수용액으로 현상한 결과 $25{\mu}m$ 해상도의 양성형 미세 화상을 얻었다. 비노광부에 잔존하는 폴리이미드 박막은 400nm에서 92% 이상의 우수한 광투과도를 나타내었다.

Polyamic acid (PAA) was prepared from cyclobutane-1,2,3,4-tetracarboxylic dianhydride (CBDA) and 4,4'-fiaminodiphenyl ether (DDE). In order to impart a photosensitivity to the PAA, diazonaphthoquinone (DNQ) derivative (DI) was added. However, the addition of the DI was not enough to inhibit the dissolution of the PAA for a aqueous alkal solution. Therefore, we had synthesized poly(amic acid ester)s by an adding 1,2-epoxy-3-phenoxypropane to the PAA. That is, an acidity of the PAA could be controlled by an esterification reaction of 1,2-epoxy-3-phenoxypropane with the PAA. Significant difference of a dissolution rate of the poly(amic acid ester) between an o(posed and unexposed area was observed at an acid content of 60% and less. Resolution of the positively patterned film showed about $25{\mu}m$ at the exposure dose of $200mJ/cm^2$.

키워드

참고문헌

  1. B. Sillion and L. Verdet, Polyimides and Other High-Temperature Polymers, M. J. M. Abadie and B. Sillion, Editors, Elsevier Science, Amsterdam, pp 363-386 (1991)
  2. C. Feger and H. Franke, Polyimides in High-Performance Electronics Packaging and Optoelectronic Applications, M.K. Ghosh and K.L. Mittal, Editors, Marcel Dekker Inc, New York, pp 759-776 (1996)
  3. H. Ahne and R. Rubner, Photosensitive Polyimides: Applications of Polyimides in Electronics, K. Horie and T. Yamashita, Editors, Technomic Publishing Company, Lancaster, Chapter 2, pp 13-15 (1995)
  4. J. M. Bureau and J. P. Droguet, Polyimides: Applications of Polyimides as Photosensitive Materials, M.K. Ghosh and K.L. Mittal, Editors, Marcel Dekker Inc, New York, pp 743-757 (1996)
  5. R. E. Kerwin and M. R. Goldrick, Polym. Eng. Sci., 11, 426 (1971) https://doi.org/10.1002/pen.760110513
  6. R. Rubner, Siemens Forsch. Entwickl. Ber., 5, 92 (1976)
  7. R. Rubner, B. Barter, and G. Bald, Siemens Forsch. Entwickl. Ber., 5, 235 (1976)
  8. R. Rubner, H. Ahne, E. Ruhn, and C. Koloddieg, Photogr. Sci. Eng., 23, 303 (1979)
  9. T. Matsumoto, Macromolecules, 32, 4933 (1999) https://doi.org/10.1021/ma9903862
  10. H. Kikkawa, F. Shoji, J. Tanaka, and F. Kataoka, Polym. Adv. Technol., 4, 268 (1992) https://doi.org/10.1002/pat.1993.220040407
  11. H. Suzuki, T. Abe, K. Takaishi, M. Narita, and F. Hamada, J. Polym. Sci., 38, 108 (2000)
  12. J. V. Crivello and K. Dietliker, Photoinitiators for Free Radical Cationic and Anionic Photo- Polymerisation, G. Bradley, Editor, John Wiley & Sons Ltd, New York, pp 115-122 (1998)
  13. K. H. Chae, C. H. Cho, J. S. Park, and J. Y. Chang, Korea Polym. J., 6, 174 (1998)
  14. K. H. Chae, J. S. Park, E. S. Kim, and M. J. Han, .Bull. Korean Chem. Soc., 18, 243 (1997)
  15. S. M. Choi, K. J. Kim, K.-Y. Choi, and M. H. Yi, J. Appl. Polym. Sci., 96, 2300 (2005) https://doi.org/10.1002/app.21288