Synthesis and Characterization of Linear and Branched Copolymers of Poly(ethylene glycol) and $Poly({\varepsilon}-caprolactone)$

선형 및 분지 구조의 폴리(에틸렌 글리콜)/폴리카프로락톤 공중합체의 합성 및 특성 검토

  • Hyun Hoon (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Kim Moon-Suk (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology) ;
  • Khang Gil-Son (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Rhee John-M. (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Lee Hai-Bang (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
  • 현훈 (전북대학교 유기신물질공학과) ;
  • 김문석 (한국화학연구원 나노생체재료연구팀) ;
  • 강길선 (전북대학교 유기신물질공학과) ;
  • 이종문 (전북대학교 유기신물질공학과) ;
  • 이해방 (한국화학연구원 나노생체재료연구팀)
  • Published : 2006.03.01

Abstract

Linear and branched copolymers consisting of poly(ethylene glycol) (PEG) and $Poly({\varepsilon}-caprolactone)$ (PCL) were prepared to compare the characterization of star-shaped copolymers with various molecular architecture. Linear and branched PEG-PCL (1-arm, 2-arm, 4-arm, and 8-arm) copolymers were synthesized by the ring-opening polymerization of ${\varepsilon}-caprolactone$ in the presence of HCl $Et_2O$ as a monomer activator at room temperature. The synthesized copolymers were characterized with $^1H-NMR$, GPC, DSC, and XRD. As a result of the DSC and XRD, each copolymers showed different thermal properties and crystallinity according to the number of ms. The micellar characterization of linear and branched copolymers in an aqueous phase was carried out by using NMR, dynamic light scattering, AM, and fluorescence techniques. The critical micelle concentration (CMC) and diameters of micelles depended on the number of arms. Most micelles exhibited a spherical shape in AFM. In this study, we characterized star-shaped PEG-PCL copolymers and investigated their molecular architecture effect on the various properties. Furthermore, we confirmed that the micelles termed with linear and branched PEG-PCL copolymers have possibility as a potential hydrophobic drug delivery vehicle.

폴리(에틸렌 글리콜)(PEG)과 생분해성 폴리에스터 그룹의 폴리카프로락톤(PCL)으로 이루어진 선형 및 분지 구조의 공중합체를 합성하고 분자 구조에 따른 다양한 특성을 비교하였다. 선형 및 분지 구조의 1-arm-PEG-PCL, 2-arm-PEG-PCL, 4-arm-PEG-PCL 및 8-arm-PEG-PCL 공중합체는 단량체 활성화제로서 Hcl $Et_2O$의 존재 하에 상온에서 카프로락톤$({\varepsilon}-CL)$의 개환중합에 의해 합성하였다. 합성된 선형 및 분지 구조의 공중합체는 $^{1}H-NMR$, GPC, DSC 및 XRD의 측정을 통해 특성을 분석하였다. 그 결과 공중합체의 가지 수에 따라 열적 특성 및 결정성이 다르게 나타나는 것을 확인하였다. 그리고 각 공중합체의 수용액상에서의 미셀 특성은 $^{1}H-NMR$, 광산란기, 원자 현미경 및 형광 측정기를 이용하여 확인하였다. 공중합체의 가지 수가 증가할수록 임계 미셀 농도 값과 미셀의 직경이 증가하는 것을 알 수 있었다. 또한 원자 현미경을 통해 관찰된 미셀의 형태는 선형 및 분지 구조의 공중합체 모두 구형으로 존재함을 확인할 수 있었다. 따라서 본 연구에서는 분자 설계를 통해 선형 및 분지 구조의 공중합체를 합성하여 각 공중합체의 분자 구조에 따른 다양한 특성을 비교하였으며 수용액상에서 형성된 미셀의 거동을 검토하여 소수성 약물 전달체로서의 가능성을 확인하였다.

Keywords

References

  1. S. B. Kharchenko and R. M. Kannan, Macromolecules, 36, 407 (2003) https://doi.org/10.1021/ma025649y
  2. T. Furukawa and K. Ishizu, Macromolecules, 36, 434 (2003) https://doi.org/10.1021/ma0213807
  3. J. Ueda, M. Kamigaito, and M. Sawamoto, Macromolecules, 31, 6762 (1998) https://doi.org/10.1021/ma980608g
  4. S. Angot, K. S. Murthy, D. Taton, and Y. Gnanou, Macromolecules, 31, 7218 (1998) https://doi.org/10.1021/ma980712y
  5. N. Hadjichristidis, M. Pitsikalis, S. Pispas, and H. Iatrou, Chem. Rev., 101, 3747 (2001) https://doi.org/10.1021/cr9901337
  6. J. P. Kennedy and S. Jacob, Acc. Chem. Res., 31, 835 (1998) https://doi.org/10.1021/ar950065k
  7. X. Zhang, J. H. Xia, and K. Matyjaszewski, Macromolecules, 33, 2340 (2000) https://doi.org/10.1021/ma991076m
  8. J. H. Xia, X. Zhang, and K. Matyjaszewski, Macromolecules, 32, 4482 (1999) https://doi.org/10.1021/ma9900378
  9. K. Baek, M. Kamigaito, and M. Sawamoto, Macromolecules, 34, 215 (2001) https://doi.org/10.1021/ma000751l
  10. A. W. Bosman, A. Heumann, G. Klaemer, D. Benoit, J. M. J. Frechet, and C. J. Hawker, J. Am. Chem. Soc., 123, 6461 (2001) https://doi.org/10.1021/ja010405z
  11. A. W. Bosman, R. Vestberg, A. Heumann, J. M. J. Frechet, and C. J. Hawker, J. Am. Chem. Soc., 125, 715 (2003) https://doi.org/10.1021/ja028392s
  12. R. P. Lanza, R. Langer, and W. L. Chick, Principles of Tissue Engineering, R. G. Landes/Academic Press, Austin, TX, 1997
  13. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science : An Introduction to Material in Medicine, Academic Press, San Diego, CA, 2000
  14. N. A. Peppas and R. Langer, Science, 263, 1715 (1994) https://doi.org/10.1126/science.8134835
  15. L. Christenson, A. G. Mikos, D. F. Gibbons, and G. L. Picciolo, Tissue Eng., 3, 71 (1997) https://doi.org/10.1089/ten.1997.3.71
  16. J. L. Hernandez-Lopez, R. E. Bauer, W. S. Chang, G. Glasser, D. Grebel-Koehler, M. Klapper, M. Kreiter, J. Leclaire, J. P. Majoral, S. Mittler, K. Mullen, K. Vasilev, T. Weil, J. Wu, T. Zhu, and W. Knoll, Mater. Sci. Eng., C23, 267 (2003)
  17. M. J. Cloinger, Curr. Opin. Chem. Biol., 6, 742 (2002) https://doi.org/10.1016/S1367-5931(02)00400-3
  18. R. Van Heerbeek, P. C. J. Karner, P. W. N. M. Van Leeuwen, and J. N. H. Reek, Chem. Rev., 102, 3717 (2002) https://doi.org/10.1021/cr0103874
  19. M. A. Carnahan, C. Middleton, J. Kim, T. Kim, and M. W. Grinstaff, J. Am. Chem. Soc., 124, 5291 (2002) https://doi.org/10.1021/ja025576y
  20. K. M. Huh and Y. H. Bae, Polymer, 40, 6147 (1999) https://doi.org/10.1016/S0032-3861(98)00822-2
  21. H. Qian, J. Bei, and S. Wang, Polym. Degrad. Stab., 68, 423 (2000) https://doi.org/10.1016/S0141-3910(00)00031-8
  22. J. K. Kim, D. Park, M. Lee, and K. J. Ihn, Polymer, 42, 7429 (2001) https://doi.org/10.1016/S0032-3861(01)00217-8
  23. H. Tsuji and K. Ikarashi, Biomaterials, 25, 5449 (2004) https://doi.org/10.1016/j.biomaterials.2003.12.053
  24. G. S. Chae, J. S. Lee, J. K. Jeong, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 335 (2004)
  25. G. Khang, J. H. Lee, J. W. Lee, J. C. Cho, and H. B. Lee, Korea Polym. J., 8, 80 (2000)
  26. K. S. Seo, S. K. Jeon, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 232 (2004)
  27. J. Du and Y. Chen, Macromolecules, 37, 3588 (2004) https://doi.org/10.1021/ma035457i
  28. Y. K. Choi, Y. H. Bae, and S. W. Kim, Macromolecules, 31, 8766 (1998) https://doi.org/10.1021/ma981069i
  29. I. Bakker-Woudenberg, Int. J. Antimicrob. Agents, 19, 299 (2002) https://doi.org/10.1016/S0924-8579(02)00021-3
  30. V. P. Torchilin, Adv. Drug Deliv. Rev., 54, 235 (2002) https://doi.org/10.1016/S0169-409X(02)00019-4
  31. A. S. Hoffman, Adv. Drug Deliv. Rev., 54, 3 (2002) https://doi.org/10.1016/S0169-409X(01)00239-3
  32. E. W. Merrill and E. W. Salzman, J. Am. Soc. Artif. Intern. Organs, 6, 60 (1983) https://doi.org/10.1177/039139888300600202
  33. J. H. Lee, J. Kopecek, and J. D. Andrade, J. Biomed. Mater. Res., 23, 351 (1989) https://doi.org/10.1002/jbm.820230306
  34. L. Zhang, C. C. Chu, and I. H. Loh, J. Biomed. Mater. Res., 27, 1425 (1993) https://doi.org/10.1002/jbm.820271110
  35. M. Strock, K. H. Orend, and T. Schmitzrixen, Vasc. Surg., 27, 413 (1993) https://doi.org/10.1177/153857449302700601
  36. S. Y. Park, D. K. Han, and S. C. Kim, Macromolecules, 34, 8821 (2001) https://doi.org/10.1021/ma010789d
  37. S. Foster and E. Kramer, Macromolecules, 32, 2783 (1999) https://doi.org/10.1021/ma981597u
  38. L. F. Hancock, S. M. Fagan, and M. S. ZioIo, Biomaterials, 21, 725 (2000) https://doi.org/10.1016/S0142-9612(99)00237-9
  39. X. S. Feng and C. Y. Pan, Macromolecules, 35, 4888 (2002) https://doi.org/10.1021/ma020004j
  40. H. Ge, Y. Hu, X. Jiang, D. Cheng, Y. Yuan, H. Bi, and C. Yang, J. Pharm. Sci., 91, 1463 (2002) https://doi.org/10.1002/jps.10143
  41. M. H. Huang, S. Li, D. W. Hutmacher, J. T. Schantz, C. A. Vacanti, C. Braud, and M. Vert, J. Biomed. Mater. Res. Part A, 69, 417 (2004)
  42. H. S. Kang, M. S. Shin, J. D. Kim, and J. W. Yang, Polymer Bulletin, 45, 39 (2000) https://doi.org/10.1007/s002890070054
  43. M. S. Kim, H. Hyun, Y. H. Cho, K. S. Seo, W. Y. Jang, S. K. Kim, G. Khang, and H. B. Lee, Polymer Bulletin, 55, 149 (2005) https://doi.org/10.1007/s00289-005-0410-5
  44. M. S. Kim, K. S. Seo, G. Khang, and H. B. Lee, Macromol. RapId. Commun., 26, 643 (2005) https://doi.org/10.1002/marc.200400650
  45. M. S. Kim, K. S. Seo, G. Khang, S. H. Cho, and H. B. Lee, J. Polym. Sci.; Part A: Polym. Chem., 42, 5784 (2004) https://doi.org/10.1002/pola.20430