Synthesis of Novel Aromatic Polyimides

새로운 방향족 폴리이미드의 합성

  • Shin Gyo-Jic (Polymer Research Institute/Center for Advanced Functional Polymers, Department of Materials Science & Engineering, Pohang University of Science & Technology(POSTECH)) ;
  • Chi Jun-Ho (Polymer Research Institute/Center for Advanced Functional Polymers, Department of Materials Science & Engineering, Pohang University of Science & Technology(POSTECH)) ;
  • Zin Wang-Cheol (Polymer Research Institute/Center for Advanced Functional Polymers, Department of Materials Science & Engineering, Pohang University of Science & Technology(POSTECH)) ;
  • Chang Tai-Hyun (Department of Chemistry, Pohang University of Science & Technology(POSTECH)) ;
  • Ree Moon-Hor (Department of Chemistry, Pohang University of Science & Technology(POSTECH)) ;
  • Jung Jin-Chul (Polymer Research Institute/Center for Advanced Functional Polymers, Department of Materials Science & Engineering, Pohang University of Science & Technology(POSTECH))
  • 신교직 (포항공과대학교 신소재공학과 고분자합성 연구실) ;
  • 지준호 (포항공과대학교 신소재공학과 고분자합성 연구실) ;
  • 진왕철 (포항공과대학교 신소재공학과 고분자합성 연구실) ;
  • 장태현 (포항공과대학교 화학과) ;
  • 이문호 (포항공과대학교 화학과) ;
  • 정진철 (포항공과대학교 신소재공학과 고분자합성 연구실)
  • Published : 2006.03.01

Abstract

In spite of excellent thermomechanical performance the majority of aromatic polyimides are so poor in processability due to their high backbone rigidity that their applications are greatly limited. The introduction of long side chains not only enhances their processiblity but also makes useful contribution to discovering new application fields. In this article, a variety of novel aromatic polyimides with flexible side chains were prepared either from new dimines or new dianhydrides to measure the influence of the side chains on structure and properties of the polymers and their new applications as liquid crystal alignment layers, photosensitive polymers, alternating multilayer nano-films and photoluminescent materials are discussed.

방향족 강직사슬 폴리이미드는 높은 주사슬 간의 인력으로 인해 유기용제에 용해되지 않고 상전이온도가 분해 온도보다 높아 응용분야에 많은 제한이 되고 있다. 방향족 폴리이미드의 가공성을 향상시키기 위해서 긴 곁사슬을 도입하면 가공성 향상뿐만 아니라 곁사슬과 주사슬 사이에 독특한 구조를 가지게 됨으로써 새로운 응용분야를 개척할 수가 있다. 본 논문에서는 여러 가지 형태의 곁사슬을 가지는 방향족 폴리이미드의 합성과 화학구조에 따른 물성변화에 대해 논의하고 또한 폴리이미드의 액정배향막, 감광재료, 교대 다층박막, 발광재료 등으로의 응용특성에 관해서도 조감한다.

Keywords

References

  1. M. T. Borgert and R. R. Renshaw, J. Am. Chem. Soc., 30, 1135 (1908) https://doi.org/10.1021/ja01949a012
  2. P. E. Cassidy, Thermally Stable Polymers, Marcel Dekker inc., New York and Basel, 1980
  3. M. K. Ghosh and K. L. Mittal., Eds., Polyimides: Fundamentals and Applications, Marcel, Dekker, New York, 1996
  4. R. A. Dine-Hart, et al., Macromol Chem., 153, 237 (1972) https://doi.org/10.1002/macp.1972.021530121
  5. H. H. Gibbs and C. V Breder, Polym. Prepr., 15, 775 (1974)
  6. T. L. Clare and E. N. Smith, Polym. Prepr., 17, 359 (1976)
  7. Y. Imai, N. N. Maider, and M. A. Kakimoto., J. Polym. Sci.; Part A: Polym. Chem., 22, 2189 (1993)
  8. V. V. Korshak, S. V. Vinogradova, and Y. S. Vygidskii, J. Macromol. Sci., Rev. Macromol. Chem., 45, C11 (1974)
  9. F. W. Harris and Y. Sakaguchi, Proc 3rd Int Conference in Polyimides, Ellenville, p. 25 (1988)
  10. F. W. Harris and S. O. Norris, J. Polym. Sci.; Part A: Polym. Chem., 11, 2143 (1973)
  11. D. A. Scola, J. Polym. Sci.; PartA: Polym. Chem., 31,1993, (1997)
  12. W. M. Edwards and I. M. Robinson, US Patents 2710853 (1955)
  13. S. Trofimenko and B. C. Auman, Mscromol., 27,1136 (1994) https://doi.org/10.1021/ma00083a010
  14. J. C. Jung and S. B. Park, J. Polym. Sci.; Part A: Polym. Chem., 34, 357 (1996) https://doi.org/10.1002/(SICI)1099-0518(199602)34:3<357::AID-POLA4>3.0.CO;2-R
  15. M. Ballauf and G. F. Schmidt, Makromol. Chem., Rapid Commun., 8, 93 (1984) https://doi.org/10.1002/marc.1987.030080206
  16. K. H. Lee and J. C. Jung, Polym. Bull., 40, 407 (1998) https://doi.org/10.1007/s002890050270
  17. H. R. Kricheldorf, Ed. Adv. Polym. Sci., Progress in Polyimide Chemistry I, 140 (1999)
  18. G. I. Nosova, T. I. Zhukova, M. M. Koton, L. A. Laius, and Y. N. Sazanov, Vysokomol. Soedin. Ser., A26, 998 (1984)
  19. G. I. Nosova, Vysokomol. Soedin. Ser., A34, 7 (1992)
  20. F. J. Williams and H. M. Relies, U.S. Pat. 4,297,474 (1981)
  21. B. K. Mandai and S. Maiti, J. Polym. Mater., 2, 115 (1985)
  22. S. Maiti and B. K. Mandal, Makromol. Chem., Rapid Commun., 6, 841 (1985) https://doi.org/10.1002/marc.1985.030061209
  23. S. Maiti and B. K. Mandal, Prog. Polym. Sci., 12, 111 (1986) https://doi.org/10.1016/0079-6700(86)90007-9
  24. J. K. Im, Ph. D. Thesis, POSTECH, Korea (2000)
  25. J. K. Im and J. C. Jung, Polym. Bull., 43, 157 (1999) https://doi.org/10.1007/s002890050547
  26. J. K. Im and J. C. Jung, J. Polym. Sci., Polym. Chem. Ed., 38, 402 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000201)38:3<402::AID-POLA2>3.0.CO;2-6
  27. J. K. Im and J. C. Jung, J. Polym. Sci., Polym. Chem. Ed., 37, 3530 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990901)37:17<3530::AID-POLA11>3.0.CO;2-G
  28. J. K. Im and J. C. Jung, Polym. Bull., 41, 409 (1998) https://doi.org/10.1007/s002890050381
  29. C. P. Yang and W. T. Chen, Macromol., 26, 4865 (1993) https://doi.org/10.1021/ma00070a022
  30. M. Ballauff, Macromol. Chem., Rapid Commun., 7, 407 (1986) https://doi.org/10.1002/marc.1986.030070615
  31. M. Ballauff and G. F. Schmidt, Mol. Cryst. Liq. Cryst., 147, 163 (1987) https://doi.org/10.1080/00268948708084632
  32. K. Berger and M. Ballauff, Mol. Cryst. Liq. Cryst., 148, 109 (1988)
  33. M. Ballauff and G. F. Schmidt, Macromol. Chem., Rapid Commun., 8, 93 (1987) https://doi.org/10.1002/marc.1987.030080206
  34. M. Wenzel, M. Ballauff, and G. Wegner, Makromol. Chem., 188, 2865 (1987) https://doi.org/10.1002/macp.1987.021881209
  35. L. Schmitz and M. Ballauff, Polym., 36, 879 (1995) https://doi.org/10.1016/0032-3861(95)93121-2
  36. K. H. Choi, Ph. D. Thesis, POSTECH, Korea (2004)
  37. P. J. M. Rodriguez, et al., Macromol., 22, 2507 (1989) https://doi.org/10.1021/ma00195a087
  38. M. Ballauff, Macromol., 19, 1366 (1986) https://doi.org/10.1021/ma00159a015
  39. H. Kim, S. B. Park, J. C. Jung, and W.-C.Zin, Polym., 37, 2845 (1996) https://doi.org/10.1016/0032-3861(96)87649-X
  40. S. J. Lee, J. C. Jung, S. W. Lee, and M. Ree, J. Polym. Sci.; Part A: Polym. Chem., 42, 3130 (2004) https://doi.org/10.1002/pola.20165
  41. D. H. Kim and J. C. Jung, Polym. Bull., 50, 311 (2003) https://doi.org/10.1007/s00289-003-0175-7
  42. J. C. Jung and S. B. Park, J. Polym. Sci.; Part A: Polym. Chem., 34, 357 (1996) https://doi.org/10.1002/(SICI)1099-0518(199602)34:3<357::AID-POLA4>3.0.CO;2-R
  43. Y. S. Kim and J. C. Jung, J. Polym. Sci.; Part A: Polym. Chem., 40, 1764 (2002) https://doi.org/10.1002/pola.10248
  44. K. H. Lee, Ph. D. Thesis, POSTECH, Korea (1998)
  45. D. H. Kim, Ph. D. Thesis, POSTECH, Korea (2003)
  46. N. A. J. M. van Aerle, et al., Macromol., 27, 6520 (1994) https://doi.org/10.1021/ma00100a042
  47. B. Chae, S. B. Kim, S. W. Lee, S. I. Kim, W. Choi, B. Lee, M. Ree, K. H. Lee, and J. C. Jung, Macromol., 35, 10119 (2002) https://doi.org/10.1021/ma020639i
  48. K. W. Lee, S. H. Paek, A. Lien, C. Durning, and H. Flukuro, Macromol., 29, 8894 (1996) https://doi.org/10.1021/ma960683w
  49. J. H. Park, J. C. Jung, B. H. Sohn, S. W. Lee, and M. Ree, J. Polym. Sci.; Part A: Polym. Chem., 39, 1800 (2001) https://doi.org/10.1002/pola.1157
  50. J. H. Park, J. C. Jung, B. H. Sohn, S. W. Lee, and M. Ree, J. Polym. Sci.; Part A: Polym. Chem., 39, 3622 (2001) https://doi.org/10.1002/pola.10010
  51. G. J. Shin and B. S. Thesis, POSTECH, Korea (2003)
  52. G. Baur and V. Wittwer, Physics Lett., 56A, 142 (1976)
  53. T. Sugiyama, S. Kuniyashi, D. S. Seo, F. Hiroyoshi, and S. Kobayashi, Jpn. J. Appl. Phys., 37, 2909 (1990) https://doi.org/10.1143/JJAP.37.2909
  54. R. Arafune, K. Sakamoto, and S. Ushioda, Appl. Phys. Lett., 71, 2755 (1997) https://doi.org/10.1063/1.119566
  55. B. S. Ban, Y. N. Rim, and Y. B. Kim, Liq. Cryst., 27, 125 (2000) https://doi.org/10.1080/026782900203290
  56. S.W. Lee, B. Chae, B. Lee, W. Choi, S. B. Kim , I. S. Kim, S. M. Park, J. C. Jung, and M. Ree, Chem. Mater., 15, 3105 (2003) https://doi.org/10.1021/cm034055m
  57. B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, Langmuir, 19, 22, 9459 (2003) https://doi.org/10.1021/la034230d
  58. S. W. Lee, S. J. Lee, S. G. Hahn, T. J. Lee, B. Lee, B. Chae, S. B. Kim, J. C. Jung, and M. Ree, Macromol., 38, 4331(2005) https://doi.org/10.1021/ma047856z
  59. M. Ree, S. W. Lee, B. Lee, W. Choi, B. Chae, S. B. Kim, K. H. Lee, and J. C. Jung, Abstracts of Papers of the Amencan Chemical Society 225, 479-POLY Part 2 (2003)
  60. B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, and M. Ree, J. Phys. Chem. B, 107, 11911 (2003) https://doi.org/10.1021/jp034955q
  61. J. K. Lee, B. S. Thesis, POSTECH, Korea (2004)
  62. J. K. Lee, J. C. Jung, and M. Ree, 'Synthesis and Characterization of from 3-[4-(n-alkyloxy)phenyloxy]pyromellitic Dianhydrides and LC Alignment Properties', in preparation
  63. S. B. Lee, B. S. Thesis, POSTECH, Korea (2005)
  64. S. J. Lee, Ph. D. Thesis, POSTECH, Korea (2004)
  65. T. Matsumoto and T. Kurosaki, Macromol., 30, 993 (1997) https://doi.org/10.1021/ma961307e
  66. T. Matsumoto and T. Kurosaki, Macromol., 28, 5864 (1995)
  67. Y. S. Kim and J. C. Jung, Polym. Bull., 45, 311 (2000) https://doi.org/10.1007/s002890070001
  68. Y. S. Kim and J. C. Jung, Polym. Bull., 46, 263 (2001) https://doi.org/10.1007/s002890170055
  69. Y. S. Kim, Ph. D. Thesis, POSTECH, Korea (2001)
  70. M. Ferrera and M. F. Rubner, Macromol., 28, 7107 (1995) https://doi.org/10.1021/ma00125a012
  71. L. Yanjing, W. Anbo, and O. C. Richard, et al., Appl. Phys. Lett., 71, 2265 (1977) https://doi.org/10.1063/1.120046
  72. G. Decher, Science, 277, 1232 (1997) https://doi.org/10.1126/science.277.5330.1232
  73. S. Joly, et al., Langmuir, 16, 1354 (2000) https://doi.org/10.1021/la991089t
  74. K. H. Choi, J. C. Jung, H. S. Kim, B. H. Sohn, W. C. Zin, and M. Ree, Polym., 45, 1517 (2004) https://doi.org/10.1016/j.polymer.2003.12.039
  75. B. V. Kotov, Russ. J. Phys. Chem., 62, 2709 (1988)
  76. L. Kan and K. C. Kao, J. Chem. Phys., 98, 3445 (1993) https://doi.org/10.1063/1.465070
  77. S. H. Park, B. S. Thesis, POSTECH, Korea (2004)
  78. K. Horie and T. Yamashita, Eds., Photosensitive polyimides: Fundamenials and Applications; Technomic Publishing Co., Lancaster, 1995
  79. S. Kubota, Y. Yamawaki, T. Ando, and A. Fukami, Macromol. Sci. Chem., A24, 1497 (1987)
  80. S. Kubota, Y. Yamawaki, T. Moriwaki, and S. Eto, Polym. Eng. Sci., 29, 950 (1989) https://doi.org/10.1002/pen.760291413
  81. T. Omote and T. Yamaoka., Polym. Eng. Sci., 32, 1632 (1992)
  82. K. Takano, Y. Mikogami, Y. Nakano, R. Hayase, and S. Hayase, J. Appl. Polym. Sci., 40, 3715 (1992)
  83. J. Pfeiffer and O. Rhode, Advences in Polyimide Science and Technology, Society of Plastic Engineering, New York, p. 336 (1987)
  84. H. Higuchi, T. Yamashita, K. Horie, and I. Mita, Chem. Meter., 3, 188 (1991) https://doi.org/10.1021/cm00013a038
  85. T. Fukushima, et al., J. Polym. Sci., Polym. Chem., 39, 934 (2001) https://doi.org/10.1002/1099-0518(20010315)39:6<934::AID-POLA1068>3.0.CO;2-T
  86. K. Morita and K. Ebara, et al., Polym., 44, 6235 (2003) https://doi.org/10.1016/S0032-3861(03)00636-0
  87. K. H. Choi, J. C. Jung, and K. S. Kim, Polym. Advan. Technol., 16, 387 (2005) https://doi.org/10.1002/pat.601
  88. G. J. Shin, J. C. Jung, and K. S. Kim, 'New Positive Type Photosensitive Polyimides Having ${\o}-Nitrobenzyl$ ether groups', in preparation