팔당호와 경안천에서 박테리아와 원생생물의 생물량과 세포크기의 시 ${\cdot}$ 공간적 분포

Temporal and Spatial Distribution of Biomass and Cell Size of Bacteria and Protozoa in Lake Paldang and Kyungan Stream

  • Son, Ju-Youn (Department of Environmental Science, Konkuk University) ;
  • Kong, Dong-Soo (Han River Environment Research Laboratory, National Institute of Environmental Research) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • 발행 : 2006.09.30

초록

본 연구는 2005년 4월부터 12월까지 팔당댐과 경안천에서 박테리아와 원생생물 생물량과 개체크기의 계절적 변화와 이에 영향을 미치는 요인들에 대하여 분석하였다. 조사기간 동안 박테리아의 밀도는 팔당댐과 경안천에서 각각 $2.8{\sim}64.6\;{\times}\;10^6$, $6.1{\sim}43.3\;{\times}\;10^6\;cells\;{\cdot}\;mL^{-1}$로서 두 지점에서 비슷한 분포를 보였고, 수온이 높은 여름동안에도 증가하지 않았다. 원생생물의 총생물량은 팔당호 ($12{\sim}73\;{\mu}gC\;{\cdot}\;L^{-1}$)에 비해 경안천 ($26{\sim}169\;{\mu}gC\;{\cdot}\;L^{-1}$)에서 훨씬 높았으며, 평균 세포크기도 경안천에서 크게 나타났다. 원생생물의 총생물량 중에서 HNAN이 전반적으로 가장 큰 비중을 차지하였으나, 팔당댐에서 4, 10, 11월에 경안천에서 6월에는 섬모충류의 비중이 가장 컸다. PNAN은 상대적으로 매우 낮은 생물량을 보였으나 봄과 가을동안에는 높게 나타났다. HNAN은 두 지점에서 모두 3{\sim}7\;{\mu}m$ 크기의 작은 개체들이 우점하였다. HNAN 평균 세포의 크기는 영양염의 농도가 훨씬 높았던 경안천에서 더 크게 나타났다. 섬모충의 세포당 평균 크기는 여름 동안에 작았다. 팔당댐에서 HNAN 생물량은 Chl-a 농도와 상관성이 있었으며, 또한 섬모충류의 생물량과 관련이 높게 나타나 HNAN의 증가가 섬모충류의 높은 생물량으로 연결된 것으로 판단되었다. 경안천에서 PNAN과 HNAN은 Chl-a 농도와 높은 상관성을 보였고, PNAN의 생물량이 증가할수록 HNAN의 생물량도 증가하였다. 섬모충류의 생물량은 다른 생물보다는 영양염 (TN, TP)과 입자성 물질(SS)과 높은 상관성을 보였다. 또한 두 지점 모두에서 원생생물의 생물량은 박테리아 생물량과 밀접한 관계를 보였고, 섬모충류는 박테리아 뿐만 아니라 편모류의 생물량과도 밀접한 관계가 있는 것으로 나타났다. 팔당호 생태계에서 본 연구의 결과가 보여준 microbial loop 구성요인들의 높은 생물량과 이들 간의 밀접한 상관관계는 팔당호 생태계 플랑크톤 먹이망 내에서 microbial loop를 통한 먹이망 기능이 중요함을 시사한다.

Seasonal changes of biomass and cell size of bacteria and protozoa, and factors affecting their distribution in Lake Paldang and Kyungan Stream were analyzed from April to December, 2005. Bacterial abundance at Paldang Dam and Kyungan Stream was similar, but it did not much increase during hot summer period. Protozoan carbon biomass was much greater at Kyungan Stream compared to Paldang Dam. HNAN generally accounted for the majority of total protozoan biomass, but ciliates made up the highest proportion in April and November at Paldang Dam and June at both sites. PNAN showed low biomass at both sites, but it was high during spring and fall season. Small-sized HNAN ($3{\sim}7\;{\mu}m$) numerically predominated the protozoan community at both sites. Average cell size of HNAN was bigger at Kyungan Stream where nutrients concentration was much higher than Paldang Dam. Average cell size of ciliates varied seasonally; it was relatively small during the summer. HNAN biomass significantly correlated with Chl-a concentration and ciliates biomass at Paldang Dam, indicating that HNAN increase might link to the ciliates increase. At Kyungan Stream, HNAN biomass showed a significant relationship with PNAN biomass, and Chl-a concentration was closely related with both of HNAN and PNAN biomass. Ciliate biomass showed significant relationship with nutrient (TN, TP) and particulate matter (SS) only at Kyungan Stream. At both sites, protozoan biomass was significantly correlated with bacterial biomass, and ciliates were additionally related flagellates. High biomass of microbial components and the close relationships among them suggest that the energy transfer through the microbial loop may important in the plankton food web of Lake Paldang ecosystem.

키워드

참고문헌

  1. 공동수. 1992. 팔당호의 육수생태학적 연구. 고려대학교 박사 학위 논문
  2. 국립환경연구원. 2003. 팔당호의 조류발생 메카니즘 규명연구 (II). NIER No. 2003-87-700
  3. 김동섭, 김범철. 1990. 팔당호의 일차생산. 육수지 23(3): 177- 179
  4. 김백호, 최지영, 황순진, 한명수. 2004. 몇가지 영양염 결핍이 팔당댐의 식물플랑크톤군집에 미치는 영향. 육수지 37(1): 47-56
  5. 김용재. 1998. 팔당댐호의 식물플랑크톤 군집의 생태적 특성. 육수지 31(3): 225-234
  6. 김종민, 박준대, 노혜란, 한명수. 2002. 소양호와 팔당호 수질의 수직 및 계절적 변화. 육수지 35(1): 10-20
  7. 문은영, 김영옥, 김백호, 공동수, 한명수. 2004. 팔당호 섬모충 플랑크톤의 분류 및 생태학적 연구. 육수지 37(2): 149- 179
  8. 박혜경, 정원화, 서정미, 김상훈, 이인선. 2002. 수질관리 (3) : 팔당호의 조류발생 특성. 2002년도 공동춘계 학술발표회 논문집 p. 173-178
  9. 박혜경, 정원화. 2003. 팔당호의 장기간 식물플랑크톤 발생 추이. 한국물환경학회지 19(6): 673-684
  10. 신재기, 박경미, 황순진, 조경제. 2001. 경안천과 팔당호에서 총 세균수의 분포 및 동태. 육수지 34(2): 119-125
  11. 신재기, 조주래, 황순진, 조경제. 2000. 경안천-팔당호의 부영 양화와 수질오염 특성. 육수지 33(4): 387-394
  12. 최승익, 변명섭, 안태석. 1997. 소양호에서 총세균수의 분포. 육수지 30: 377-383
  13. 환경부. 1996. 수질오염공정시험방법
  14. Andersen, P. and H.M. Sorensen. 1986. Population dynamics and trophic coupling in pelagic microorganisms in eutrophic coastal waters. Mar. Ecol. Prog. Ser. 33: 99- 109 https://doi.org/10.3354/meps033099
  15. Andersen, P. and T. Fenchel. 1985. Bacteriovory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30: 198-202 https://doi.org/10.4319/lo.1985.30.1.0198
  16. APHA-AWWA-WEF. 1995. Standard methods for the examination of water and wastewater. 19th ed., APHAAWWA- WEF. Washington D.C. USA
  17. Auer, B., U. Elzer and H. Arndt. 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J. Plankton Res. 26(6): 697-709 https://doi.org/10.1093/plankt/fbh058
  18. Azam, F., T. Fenchel, J.G. Field, L.A. Meyer_riel and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ecol. 10: 257-263 https://doi.org/10.3354/meps010257
  19. Beaver, J.R. and T.L. Crisman. 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246-253 https://doi.org/10.4319/lo.1982.27.2.0246
  20. Berk, S.G., D.C. Brownlee, D.R. Heinle, H.J. Kling and R.R. Colwell. 1977. Ciliates as a food source for marine planktonic copepods. Microb. Ecol. 4: 27-40 https://doi.org/10.1007/BF02010427
  21. Biyu, S. 2000. A comparative study on planktonic ciliates in two shallow mesotrophic lakes (China): species composition, distribution and quantitative importance. Hydrobiol. 427: 143-153
  22. Borsheim, K.Y. and G. Bratbak. 1987. Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171- 175 https://doi.org/10.3354/meps036171
  23. Callieri, C., S.M. Karjalainen and S. Passoni. 2002. Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy. J. Plankton Res. 24(8): 785-796 https://doi.org/10.1093/plankt/24.8.785
  24. Caron, D.A. 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescent microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46: 491-498
  25. Carrick, H.J. and Fahnenstiel, G.I. 1989. Biomass, size structure and composition of phototrophic and heterotrophic nanoflagellate communities in Lakes Huron and Michigan. Can J. Fish. Aquat. Sci. 46: 1922-1928 https://doi.org/10.1139/f89-242
  26. Christaki, U., A. Giannakourou, F. Van Wambeke and G. Gregori. 2001. Nanoflagellate predation on auto- and heterotrophic picoplankton in the oligotrophic Mediterranean Sea. J. Plankton Res. 23: 1297-1310 https://doi.org/10.1093/plankt/23.11.1297
  27. Chrost, R.J. 1990. Microbial extoenzymes in aquatic environments. p. 47-78. In: R.J. chrost (ed.). Aquatic Microbial Ecology. Springer Verlag, New York
  28. Chrzanowski, T.H. and K. Simek. 1993. Bacterial growth and losses due to bacterivory in a mesotrophic lake. J. Plankton Res. 15: 771-785 https://doi.org/10.1093/plankt/15.7.771
  29. Ducklow, H. 1983. Production and fate of bacteria in the oceans. Bioscience 33: 494-501 https://doi.org/10.2307/1309138
  30. Fenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35-42 https://doi.org/10.3354/meps009035
  31. Fukami K., B. Meier and J. Overbeck. 1991. Vertical and temporal changes in bacterial production and its consumption by heterotrophic nanoflagellates in a north German eutrophic lake. Arch Hydrobiol. 122: 129-145
  32. Gasol, J.M. and D. Vaque. 1993. Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systems. Limnol. Oceanogr. 38: 657-665 https://doi.org/10.4319/lo.1993.38.3.0657
  33. Hwang, S.J. and R.T. Heath. 1997. Bacterial productivity and protistan bacterivory in costal and offshore communities of Lake Erie. Can. J. Fish. Aquat. Sci. 54: 788-799 https://doi.org/10.1139/cjfas-54-4-788
  34. Kennedy, R.H. and W.W. Walker. 1990. Reservoir nutrient dynamics. In: Thornton, K.W., B.L. Kimmel and F.E. Payne, (eds.) Reservoir limnology: ecological perspectives. John Wiley & Sons, Inc. New York, NY. pp. 109- 131
  35. Kuuppo, P. 1994. Annual in the abundance and size of heterotrophic nanoflagellates on the SW coast of Finland, the Baltic Sea. J. Plankton Res. 16(11): 1525- 1542 https://doi.org/10.1093/plankt/16.11.1525
  36. Laws, E.A., D.G. Redalje, L.W. Haas, P.K. Beinfang and R.W. Eppley. 1984. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnol. Oceanogr. 29: 1161-1169 https://doi.org/10.4319/lo.1984.29.6.1161
  37. Laybourn-Parry, J., J. Olver, A. Rogerson and P.L. Duverge. 1990. The temporal and spatial patterns of protozooplankton abundance in a eutrophic temperate lake. Hydrobiol. 203: 99-110 https://doi.org/10.1007/BF00005618
  38. Laybourn-Parry, J.L., M. Walton, J. Young, R.I. Jones and A. Shine. 1994. Proto-zooplankton in a large oligotrophic lake-Loch Ness, Scotland. J. Plankton Res. 16: 1655- 1670 https://doi.org/10.1093/plankt/16.12.1655
  39. Lee, J.J. and J.A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53: 1298- 1303
  40. Maker, A.F.H., E.A. Nusch, I. Rai and B. Riemann. 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: Conclusions and recommendations. Arch. Hydrobiol. Beih. 14: 91- 106
  41. Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwat. Biol. 2: 361-385 https://doi.org/10.1111/j.1365-2427.1972.tb00377.x
  42. McManus, G.B. and J.A. Fuhrmann. 1988. Control of marine bacterioplankton populations: measurement and significance of grazing. Hydrobiol. 159: 51-62 https://doi.org/10.1007/BF00007367
  43. Muller, H., A. Schone, R.M. Pinto-Coelho, A. Schweizer and T. Weisse. 1991. Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21: 119-138 https://doi.org/10.1007/BF02539148
  44. Nagata, T. 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504-517 https://doi.org/10.4319/lo.1988.33.4.0504
  45. Nakano, S.I. and Zen' ichiro Kawabata. 2000. Changes in cell volume of bacteria and heterotrophic nanoflagellates in a hypereutrophic pond. Hydrobiol. 428: 197- 203 https://doi.org/10.1023/A:1003971516725
  46. Nakano, S.I., N. Manage, P.M. and Kawabata, Z. 1998. Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat. Microb. Ecol. 16: 153-161 https://doi.org/10.3354/ame016153
  47. Pace, M.L. 1982. Planktonic ciliates: their distribution, abundance and relationship to microbial resources in a monomictic lake. Can. J. Fish Aquat. Sci. 39: 1106-1116 https://doi.org/10.1139/f82-148
  48. Porter, K.G., M.C. Pace and J.F. Battey. 1979. Ciliate protozoans as lines in freshwater planktonic food chains. J. Protozool. 27: 114-125
  49. Poter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  50. Putland, J.N. 2000. Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter. 2000. J. Plankton Res. 22(2): 253-277 https://doi.org/10.1093/plankt/22.2.253
  51. Rassoulzadegan, F., M. Laval-Peuto and R.W. Sheldon. 1988. Partioning of the food ratio of marine ciliates between picoplankton and nanoplankton. Hydrobiol. 159: 75-88 https://doi.org/10.1007/BF00007369
  52. Rheinheimer, G. 1985. Aquatic microbiology. 3rd ed., p. 69- 93. John Wiley and Sons. Chichester
  53. Riemann, B. and M. Sondergaard. 1986. Carbon dynamics in eutrophic temperate lakes (eds), Elsevier Science Publishers B.V., Netherland
  54. Sanders, R.W., D.A. Caron and U.G. Berninger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters; an interecosystem comparison. Mar. Ecol. Prog. Ser. 86: 1-14 https://doi.org/10.3354/meps086001
  55. Sheldon, R.W., P. Nival and F. Rassouleadegan. 1986. An experimental investigation of a flagellate-ciliatecopepod food chain with some observation relevant to the linear biomass hypothesis. Limol. Oceacogr. 31: 184-188 https://doi.org/10.4319/lo.1986.31.1.0184
  56. Sherr, B.F. and Sherr, E.B. 1991. Proportional distribution of total numbers, biovolume and bacterivory among size classes of 2-20 ${\mu}$m nonpigmented marine flagellates. Mar. Microb. Food Webs 5: 227-237
  57. Sherr, B.F., E.B. Sherr and T. Berman. 1983. Grazing growth and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Environ. Microbiol. 45: 1196-1201
  58. Sherr, E.B. and B.F. Sherr. 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28: 223-235 https://doi.org/10.1007/BF00166812
  59. Sieburth, J. McN., V. Smetacek and J. Lenz. 1978. Pelagic ecosystem structure: heterotrophic components of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256-1263 https://doi.org/10.4319/lo.1978.23.6.1256
  60. Simek, K., P. Hartman, J. Nedoma, J. Pernthaler, D. Springmann, J. Vrba and R. Psenner. 1997a. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat. Microb. Ecol. 12: 49-63 https://doi.org/10.3354/ame012049
  61. Simek, K., J. Vrba, J. Pernthaler, T. Posch, P. Hartman, J. Nedoma and R. Psenner. 1997b. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Envir. Microbiol. 63: 587-595
  62. Simon, M. and F. Azam. 1989. Protein content and protein sunthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201-213 https://doi.org/10.3354/meps051201
  63. Sorokin, Y.I. 1977. The heterotrophic phase of plankton succession on the Japan Sea. Mar. Biol. 41: 107-117 https://doi.org/10.1007/BF00394018
  64. Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411-418 https://doi.org/10.4319/lo.1967.12.3.0411
  65. Tadonleke, R.D., D. Planas and M. Lucotte. 2005. Microbial Food Webs in Boreal Humic Lakes and Reservoirs: Ciliates as a major Factor Related to the Dynamics of the Most Active Bacteria. Microbial Ecology 49: 325- 341 https://doi.org/10.1007/s00248-004-0232-2
  66. Tobiesen, A. 1991. The succession of microheterotrophs and phytoplankton within the microbial loop in Oslofjorden, May-October 1984. J. Plankton Res. 13: 197-216 https://doi.org/10.1093/plankt/13.1.197
  67. Weisse, T. 1991. The annual cycle of heterotrophic freshwater nanoflagellates: Role of bottom-up versus topdown control. J. Plankton Res. 13: 167-185 https://doi.org/10.1093/plankt/13.1.167
  68. Weisse. T. 1990. Trophic interactions among heterotrophic microplankton, nanoplankton and bacteria in Lake Constance. Hydrobiol. 191: 111-122 https://doi.org/10.1007/BF00026045
  69. Wetzel, R.G. and G.E. Likens. 2000. Limnological Analysis. 3rd ed. p. 429. Springer. New York
  70. Wetzel, R.G. 1983. Limnology. Saunders College Publishing. pp. 487-518
  71. Wylie, J.L. and D.J. Currie. 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708-728 https://doi.org/10.4319/lo.1991.36.4.0708
  72. Zhao, Y., Y. Yuhe, F. Weisong and S. Yunfen. 2003. Growth and production of free-living heterotrophic nanoflagellates in a eutrophic lake-Lake Donghu, Wuhan, China. Hydrobiol. 498: 85-95 https://doi.org/10.1023/A:1026239306120