ON A CLASS OF $\gamma$-PREOPEN SETS IN A TOPOLOGICAL SPACE

  • Published : 2006.12.31

Abstract

In this paper we introduce the concept of $\gamma$-preopen sets in a topological space together with its corresponding $\gamma$-preclosure and $\gamma$-preinterior operators and a new class of topology $\tau_{{\gamma}p}$ which is generated by the class of $\gamma$-preopen sets. Also we introduce $\gamma$-pre $T_i$ spaces(i=0, $\frac{1}{2}$, 1, 2) and study some of its properties and we proved that if $\gamma$ is a regular operation, then$(X,\;{\tau}_{{\gamma}p})$ is a $\gamma$-pre $T\frac{1}{2}$ space. Finally we introduce $(\gamma,\;\beta)$-precontinuous mappings and study some of its properties.

Keywords