DOI QR코드

DOI QR Code

Comparisons of Numerical Analyses considering the Effects of Shear Strength Degradation For Nonseismic Designed RC Frame

비내진 설계된 RC 골조에 대한 전단강도 감소 효과를 고려한 수치해석의 비교

  • Published : 2006.02.28

Abstract

Nonseismic designed RC frame have a possibility of shear failure because of deficiencies of reinforcing details. To model the shear failure in numerical analysis, shear strength degradation models which Include Moehle's and ATC 40 are compared and applied to push-over analysis. For numerical analysis, three storied building frame is selected and designed according to Korean Concrete Design Code(2003). As results, It is shown that Moehle's shear strength degradation model estimates the shear strength lower than NZSEE model and has less variation than ATC 40 model and all the shear strengths of models are greater than the nominal shear strength of ACI 318. Also, from the numerical analysis, it is pointed out that there may be great difference in lateral drift capacity if a different shear strength model is used. And the capacity can be severely underestimated if the restraining model of plastic rotation of ATC 40 is used, compared to the use of shear spring model for shear degradation.

비내진 설계된 철근콘크리트 골조는 내진상세의 미확보로 인하여 전단파괴의 가능성이 있다. 이러한 전단파괴를 해석 모델링에 반영하기 위하여 Moehle과 ATC 40을 포함한 4개의 전단강도감소 모델을 선택하고 비교하였으며, 각 모델을 예제 건물에 적용하여 Push-over해석을 수행하였다. 해석용 예제 모델은 3층 규모로 하였으며 국내 콘크리트 설계기준에 따라 설계하였다. 전단강도 감소모델 비교 결과, Moehle의 모델은 NZSEE의 모델보다 전단내력을 작게 평가하고 ATC 40 모델에 비하여 휨 연성도에 따른 내력의 변동이 작으며, 대부분의 경우에 고찰된 모델들의 전단내력은 ACI 318의 공칭 전단강도보다 크게 나타남을 알 수 있었다. 예제 모델의 수치해석 비교 결과, 전단강도 감소모델에 따라 건물의 수평 저항 능력에 큰 차이가 나타나며, 전단스프링에 전단강도 감소를 고려한 모델에 비하여 ATC 40의 횡 소성 변형을 제한하는 모델을 사용하면 횡저항 능력을 과소평가하게 됨을 알 수 있었다.

Keywords

References

  1. ATC 40, Seismic Evaluation and Retrofit of Concrete Buildings, California Seismic Safety Commission, 1996
  2. Hoffmann, G.W., Kunnath, S.K., Reinhorn, A.M. and Mander, J.B., 'Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and Detailing Strategies for Improved Seismic Resistance,' Technical Report NCEER-92-0016, NCEER, 1992
  3. Beres, A., EI-Borgi, S., White, R.N. and Gergely, P., 'Experimental Results of Repaired and Retrofitted Beam-Coulumn Joint Tests in Lightly Reinforced Concrete Frame Buildings,' Technical Report NCEER-92-0025, NCEER, 1992
  4. Moehle, J.P., Elwood, K.J. and Sezen, H., 'Gravity Load Collapse of Building Frames During Earthquakes,' ACI-SP197: S.M. Uzumeri Symposium - Behavior and Design of Concrete Structures for Seismic Performance, ACI 2002
  5. 한국콘크리트학회, 콘크리트 구조설계 기준 해설, 2003
  6. 대한건축학회, 건축물의 하중기준 및 해설, 2000
  7. Priestley, MJN, 'Displacement Based Seismic Assessment of Existing Reinforced Concrete Moment Resisting Frames,' Pacific Conference of Earthquake Engineering, Vol 2, Nov. 1995, pp. 225-244
  8. The Assessment and Improvement of the Structural Performance of Earthquake Risk Buildings, NZSEE, 1996
  9. ACI Committee, Building Code Requirements for Structural Concrete (ACI 318-02), American Concrete Institute, 2002
  10. Giberson, M. F., 'Two Nonlinear Beams with Definitions of Ductility,' Journal of the Structural Division of ASCE, Vol 95, No ST2, Feb., 1969, pp. 137 - 157
  11. Iman, S., 'Adaptive Pushover Analysis for the Seismic Assessment of Older Reinforced Concrete Buildings,' University of Canterbury, New Zealand, 2000
  12. Carr., A.J., RUAUMOKO, Computer Program Library, Dept. of Civil Engineering University of Canterbury, New Zealand. 2001