DOI QR코드

DOI QR Code

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams

철근 콘크리트 연결보의 하중 전달 기구와 변형 능력

  • 홍성걸 (서울대학교 공과대학 건축학과) ;
  • 장상기 (서울대학교 공과대학 건축학과)
  • Published : 2006.06.30

Abstract

An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

콘크리트 부재의 내진설계에 있어 강도와 더불어 변형 능력은 중요한 요소이다. 연결보는 전단 지배 부재임에도 항복 이후 소성 변형을 요구하는 부재인데 본 연구에서는 연결보의 변형 능력에 대한 실험을 통해 변형 모형을 제시하였다. 일반적인 배근 형태를 가진 철근 콘크리트 연결보를 대상으로 단조하중실험을 수행하였다. 경간-깊이비, 휨 철근비, 전단 철근비를 변수로 하여 연결보의 거동을 평가하였다. 전단 지배 부재인 연결보는 아치작용과 트러스 작용으로 전단력에 대해 저항하는데 실험 결과를 통해 전단력을 두 작용의 구분과 항복 강도 발현 이후 소성 변형에 따른 두 작용의 구성비 변화에 대해 분석하였다. 실험결과에 기초한 전단 철근과 휨 철근의 변형률 분포 모형을 이용하여 휨 철근의 응력 상태를 산정하였다. 휨 철근의 부착-미끄러짐에 의해 결정되는 균열폭을 고려하는 연결보의 변형 모형을 제시하였다. 항복 상태는 휨 철근의 항복 시점으로 정의하였고, 극한 상태는 변형 증가에 따른 스트럿의 압축 강도 저하에 의해 결정되었다. 이 변형 모형은 변위기초설계에 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Paulay, T., 'Simulated Seismic Loading of Spandrel Beams,' Journal of the structural Division, American Society of Civil Engineers, V. 97, NO. ST9, 1971, pp. 2407-2419
  2. Paulay, T., 'Coupling Beams of Reinforced Concrete Shear Walls,' Journal of the structural Division, American Society of Civil Engineers, V. 97, NO. ST3, 1971, pp. 843-862
  3. Paulay, T. and Santhakumar, A. R., 'Ductile Behavior of Coupled Shear Walls,' Journal of the structural Division, American Society of Civil Engineer, V. 102, NO. ST1, 1976, pp. 93-108
  4. Paulay, T., 'The Displacement Capacity of Reinforced Concrete Coupled Walls,' Engineering Structure, V. 24, NO. 9, 2002, pp. 1165-1175 https://doi.org/10.1016/S0141-0296(02)00050-0
  5. Galano, L., and Vignoli, A., 'Seismic Behavior of Short Coupling Beams with Different Reinforcement Layouts,' ACI structural Journal, V. 97, NO. 6, 2000, pp. 876-885
  6. Tegos, I. A. and Penelis, G., 'Seismic Resistance of Short Columns and Coupling Beams Reinforced With Inclined Bars,' ACI structural Journal, V. 85, NO. 1, 1985, pp. 82-88
  7. Theodosios, P. T., Marina, M. and Antonios, B., 'On the Behavior and Ductility of Reinforced Concrete Coupling Beams of Shear Walls,' ACI structural Journal, V. 93, NO. 6, 1996, pp. 711-720
  8. Comite Euro-Intemational du Beton, CEB-FIP Model Code 1990 : design code, London: T. Telford, 1993, 437pp
  9. Vecchio, F. J., and Collins, M. P., 'The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,' ACI structural Journal, V. 83, NO. 2, 1986, pp. 219-231
  10. Marti, P., Alvarez, M., Kaufmann, W. and Sigrist, V., 'Tension Chord Model for Structural Concrete,' ETH, Zurich, Swiss, 1998
  11. ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary (ACI 318-02/318R-02), American Concrete Institute, Farmington Hills, Michigan, 2002
  12. Canadian Standard Association, A23.3-04 Design of Concrete structures, CSA, 2004, 214pp
  13. New Zealand Standard, NZS 3101:1995 concrete structures standard, NZS, 1999
  14. Lee, S. G., and Hong, S. G., 'Strut-and-tie Models for Reinforced Concrete Interior Beam-Column Joints with Required Ductility,' the 5th SEEBUS, 2003
  15. Lee, S. G., 'Deformation Dependent Strut-and-tie Model', PhD dissertation, Seoul National University, 2004
  16. Macgregor, J. G., Reinforced Concrete, Prentice Hall, 1997, 939pp
  17. Park, R. and Paulay, T., Reinforced Concrete Structures, John Wiley and Sons, 1972, 769pp
  18. Paulay, T., and Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Building, John Wiley and Sons, 1992, 744pp
  19. Priestley, M. J. N., Verma, R. and Xiao, Y., 'Seismic Shear Strength of Reinforced Concrete Column,' Journal of structural Engineering, American Society of Civil Engineer, V. 120, NO. 8, 1994, pp. 2310-2329 https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2310)
  20. Shakir, A. and Rogowsky, D. M., 'Evaluation of Ductility and Allowable moment redistribution in reinforced concrete structures,' Canadian journal of civil engineering, V.27, 2000, pp. 1286-1299 https://doi.org/10.1139/cjce-27-6-1286

Cited by

  1. Hysteretic Behavior Evaluation of a RC Coupling Beam using a Steel Fiber and Diagonal Reinforcement vol.27, pp.3, 2015, https://doi.org/10.4334/JKCI.2015.27.3.291