REDEI MATRIX IN FUNCTION FIELDS

  • Jung, Hwanyup (Department of Mathematics Education Chungbuk National University)
  • Received : 2006.09.22
  • Published : 2006.12.31

Abstract

Let K be a finite cyclic extension of $k=\mathbb{F}_q(T)$ of prime degree ${\ell}$. Let ${\tilde{\mathcal{C}}}l_{K,{\ell}}$ be the Sylow ${\ell}$-subgroup of the ideal class group ${\tilde{\mathcal{C}}}l_K$ of $\mathcal{O}_K$. The structure of ${\tilde{\mathcal{C}}}l_{K,{\ell}}$ as $\mathbb{Z}_{\ell}[G]$/<$N_G$>-module is determined the dimensions $${\lambda}_i\;:=dim_{\mathbb{F}_{\ell}}({\tilde{\mathcal{C}}}l_{K,{\ell}}^{({\sigma}-1)^{i-1}}/{\tilde{\mathcal{C}}}l_{K,{\ell}}^{({\sigma}-1)^i})$$ for $i{\geq}1$. In this paper we investigate the dimensions ${\lambda}_1$ and ${\lambda}_2$.

Keywords