DOI QR코드

DOI QR Code

Magnetic and Electronic Properties of Reduced Rutile Ti1-xMnxO2-δ Thin Films

  • 발행 : 2006.03.01

초록

Magnetic and electronic properties of reduced rutile titanium dioxide $(TiO_{2-\delta})$ thin films doped by Mn have been investigated. The present sol-gel-grown semiconducting $TiO_{2-\delta}:Mn$ films exhibit a ferromagnetic behavior at room temperature for a limited range of Mn content. The Mn-doped films have p-type electrical conductivity with the carrier concentration near $10^{19}\;cm^{-3}$. The observed room-temperature ferromagnetism is believed to be intrinsic but not related to free carriers such as holes. Oxygen vacancies are likely to contribute to the room-temperature ferromagnetism-trapped carriers in oxygen vacancies can mediate a ferromagnetic coupling between neighboring $Mn^{+3}$ ions. The energy band-gap change due to the Mn doping measured by spectroscopic ellipsometry exhibits a red-shift compared to that of the undoped sample at low Mn content. It is explainable in terms of strong spin-exchange interactions between Mn ion and the carrier.

키워드

참고문헌

  1. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854 (2001) https://doi.org/10.1126/science.1056186
  2. N. H. Hong, J. Sakai, and A. Hassini, Appl. Phys. Lett. 84, 2602 (2004) https://doi.org/10.1063/1.1703848
  3. T. Droubay, S. M. Heald, V. Shutthanandan, S. Thevuthasan, S. A. Chambers, and J. Osterwalder, J. Appl. Phys. 97, 046103 (2005) https://doi.org/10.1063/1.1846158
  4. Z. Wang, J. Tang, L. D. Tung, W. Zhou, and L. Spinu, J. Appl. Phys. 93, 7870 (2003) https://doi.org/10.1063/1.1556122
  5. N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, Phys. Rev. B 70, 195204 (2004) https://doi.org/10.1103/PhysRevB.70.195204
  6. Y. J. Kim, S. Thevuthasan, T. Droubay, A. S. Lea, C. M. Wang, V. hutthanandan, R. P. Sears, B. Taylor, and B. Sinkovic, Appl. Phys. Lett. 84, 3531 (2004) https://doi.org/10.1063/1.1703845
  7. P. A. Stampe, R. J. Kennedy, Y. Xin, and J. S. Parker, J. Appl. Phys. 92, 7114 (2002) https://doi.org/10.1063/1.1521259
  8. H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki, Nature Mater. 3, 221 (2004) https://doi.org/10.1038/nmat1099
  9. Y. R. Park and K. J. Kim, Thin Solid Films 484, 34 (2005) https://doi.org/10.1016/j.tsf.2005.01.039
  10. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976) https://doi.org/10.1107/S0567739476001551
  11. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000) https://doi.org/10.1126/science.287.5455.1019
  12. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004) https://doi.org/10.1063/1.1650041
  13. M. S. Park, S. K. Kwon, and B. I. Min, Phys. Rev. B 65, 161201 (2002) https://doi.org/10.1103/PhysRevB.65.161201
  14. Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal, Phys. Rev. B 38, 10600 (1988) https://doi.org/10.1103/PhysRevB.38.10600
  15. K. J. Kim and Y. R. Park, J. Appl. Phys. 94, 867 (2003) https://doi.org/10.1063/1.1582395