References
- S. Axler and Z. Cuckovid, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory, 14 (1991), no. 1, 1-12 https://doi.org/10.1007/BF01194925
- B. R. Choe, H. Koo, and Y. J. Lee, Commuting Toeplitz operators on the polydisk, Trans. Amer. Math. Soc. 356 (2004), no. 5, 1727-1749 https://doi.org/10.1090/S0002-9947-03-03430-5
- B. R. Choe and Y. J. Lee, Commuting Toeplitz operators on the harmonic Bergman space, Michigan Math. J. 46 (1999), no. 1, 163-174 https://doi.org/10.1307/mmj/1030132367
- Z. Cuckovic, Commuting Toeplitz operators on the Bergman space of an annulus, Michigan Math. J. 43 (1996), no. 2, 355-365 https://doi.org/10.1307/mmj/1029005468
- S. G. Krantz, Function theory of several complex variables, John Wiley and Sons, New York, 1982
- Y. J. Lee and K. Zhu, Some differential and integral equations with applications to Toeplitz operators, Integral Equations Operator Theory 44 (2002), 466-479 https://doi.org/10.1007/BF01193672
- W. Rudin, Function theory in the unit ball of en, Springer-Verlag, Berlin, Heidelberg, New York, 1980
- S. Sun and D. Zheng, Toeplitz operators on the polydisk, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3351-3356
- D. Zheng, Commuting Toeplitz operators with pluriharmonic symbols, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1595-1618 https://doi.org/10.1090/S0002-9947-98-02051-0
- K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990
Cited by
- Properties of Commutativity of Dual Toeplitz Operators on the Orthogonal Complement of Pluriharmonic Dirichlet Space over the Ball vol.2016, 2016, https://doi.org/10.1155/2016/1054768
- Commuting dual Toeplitz operators on the harmonic Bergman space vol.58, pp.7, 2015, https://doi.org/10.1007/s11425-014-4940-x
- The Pluriharmonic Hardy Space and Toeplitz Operators 2017, https://doi.org/10.1007/s00025-017-0728-y
- The Numerical Range of Toeplitz Operator on the Polydisk vol.2009, 2009, https://doi.org/10.1155/2009/757964
- Commuting dual Toeplitz operators on the harmonic Dirichlet space vol.32, pp.9, 2016, https://doi.org/10.1007/s10114-016-5663-4
- Algebraic Properties of Toeplitz Operators on the Pluriharmonic Bergman Space vol.2013, 2013, https://doi.org/10.1155/2013/578436
- Commuting Toeplitz operators on the hardy space of the polydisk vol.31, pp.4, 2015, https://doi.org/10.1007/s10114-015-4174-z