DOI QR코드

DOI QR Code

Fabrication of Movable Nanostructures by Selective Etching of Nanoplates

나노판의 선택적 식각에 의한 이동이 가능한 나노구조체 제작

  • 윤용주 (한국표준과학연구원 전략기술연구부, 서강대학교 물리학과) ;
  • 아칠성 (한국표준과학연구원 전략기술연구부, 한국전자통신연구원 IT융합부품연구소) ;
  • 윤완수 (한국표준과학연구원 전략기술연구부) ;
  • 하동한 (한국표준과학연구원 전략기술연구부)
  • Published : 2006.03.01

Abstract

Movable nanometer-scale structures are fabricated by selective etching of single crystalline Au nanoplates. The nanostructures have arbitrary shapes like gear and alphabet 'A' with in-plane size less than 500 m and thickness of $25\sim60nm$. They could be moved successfully on the substrate using a nanornanipulator installed in a focused ion beam system. Our approach is expected to be useful in fabricating various kinds of nanocomponents which can play a role as building blocks for the sophisticated nanodevices or micromachines.

Keywords

References

  1. Patolsky, F. and Lieber, C. M., 2005, 'Nanowire Nanosensors,' Materials Today, Vol. 8, pp. 20-28
  2. Huang, Y. and Lieber, C. M., 2004, 'Integrated Nanoscale Electronics and Optoelectronics: Exploring Nanoscale Science and Technology Through Semiconductor Nanowires,' Pure Appl. Chem., Vol. 76, pp. 2051-2068 https://doi.org/10.1351/pac200476122051
  3. Craighead, H. G. 2000, 'Nanoelectromechanical Systems,'Science, Vol. 290, pp. 1532-1535 https://doi.org/10.1126/science.290.5496.1532
  4. Link, S. and El-Sayed, M. A. 1999, 'Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,' J. Phys. Chern. B., Vol. ?103, pp. 8410-8426 https://doi.org/10.1021/jp9917648
  5. Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich A. and Alivisatos, A. P. 2000, 'Shape control of CdSe Nanocrystals,' Nature, Vol. 404, pp. 59-61 https://doi.org/10.1038/35003535
  6. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H., 2003, 'One-Dimensional Nanostructures: Synthesis, Characterization, and Applicationa,' Adv. Mater., Vol. 15, pp. 353-389 https://doi.org/10.1002/adma.200390087
  7. Jin, R., Cao, Y., Mirkin, C. A., Kelly, K. L., Schatz, G. C., Zheng, J. G., 2001, 'Photoinduced Conversion of Silver Nanospheres to Nanoprisms,' Science, Vol. 294, pp. 1901-1903 https://doi.org/10.1126/science.1066541
  8. Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A. and Sastry, M., 2004, 'Biological Synthesis of Triangular Gold Nanoprisms,' Nature Mater., Vol. 3, pp. 482-488 https://doi.org/10.1038/nmat1152
  9. Sun, X., Dong, S. and Wang, E., 2004, 'Large-Scale Synthesis of Micrometer-Scale Single-Crystalline Au Plates of Nanometer Thickness by a Wet-Chemical Route,' Angew. Chem., Vol. 116, pp. 6520-6523 https://doi.org/10.1002/anie.200461013
  10. Matsui, S. and Ochiai, Y., 1996, 'Focused Ion Beam Applications to Solid State Devices,' Nanotechnology, Vol. 7, pp. 247-258 https://doi.org/10.1088/0957-4484/7/3/013
  11. Yan, F. and Goedel, W. A., 2004, 'Preparation of Mesoscopic Gold Rings Using Particle Imprinted Templates,' Nano Lett., Vol. 4, pp. 1193-1196 https://doi.org/10.1021/nl0497169
  12. Geissler, M., McLellan, J. M. and Xia, Y., 2005, 'Edge-Spreading Lithography: Use of Patterend Photoresist Structures to Direct Spreading of Alkanethiols on Gold,' Nano Lett., Vol. 5, pp. 31-36 https://doi.org/10.1021/nl048497o
  13. Nam, C. Y., Kim, J. Y. and Fischer, J.E., 2005 'Focused-ion-Beam Platium for GaN Nanowires: Ohmic Nanopatterning Contacts and ?Patterned Growth,' Appl. Phys. Lett., Vol. 86, pp. 193112 https://doi.org/10.1063/1.1925775
  14. Wu, S. and Liu, C., 2005, 'Direct Writing of Si Island Arrays by Focused Ion beam Milling,' Nanotechnology, Vol. 16, pp. 2507-2511 https://doi.org/10.1088/0957-4484/16/11/007
  15. Bell, C., Burnell, G., Kang, D., Hadfield, R. H., Kappers M. J. and Blamire, M. G. 2005, 'Fabrication of Nanoscale Heterostructure Devices with a Focused Ion Beam Microscope,' Nanotechnology, Vol. 14, pp. 630-632 https://doi.org/10.1088/0957-4484/14/6/312
  16. Ah, C. S., Yun, Y. J., Park, H. J., Kim, W. J., Ha, D. H. and Yun. W. S., 2005, 'Size-controlled Machinable Gold Nanoplate by Kinetic Shape Control,' Chem. Mater., Vol. 17, pp. 5558-5561 https://doi.org/10.1021/cm051225h
  17. Storhoff, J. J., Lazarides, A. A., Mucic, R. c., Mirkin, C. A, Letsinger, R. L., and Schatz, G. C., 2000, 'What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies,' J. Am. Chern. Soc.., Vol. 122, pp. 4640-4650 https://doi.org/10.1021/ja993825l
  18. Fromm, D. P., Sundaramurthy, A., Schuck, P. J., Kino, G. and Moerner, W. E., 2004, 'Gap-Dependent Optical Coupling of Single 'Bowtie' Nanoantennas Resonant in the Visible,' Nano Lett., Vol. 4, pp. 957-961 https://doi.org/10.1021/nl049951rS1530-6984(04)09951-5
  19. Cao, Y. C, Jin, R. and Mirkin, C. A., 2002, 'Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection,' Science, Vol. 297, pp. 1536-1540 https://doi.org/10.1126/science.297.5586.1536
  20. Maier, S. A., Kik, P. G. and H. A. Atwater, 2002, 'Observation of Coupled Plasmaon-Polariton Modes in Au Nanoperticle Chain Waveguides of Different Lengths: Estimation of Waveguide Loss,' Appl. Phys. Lett., Vol. 81, pp. 1714-1716 https://doi.org/10.1063/1.1503870
  21. Liu, Z., Song, H., Yu, L. and Yang, L., 2005, 'Fabrication and Near-Infrared Photothermal Conversion Characteristics of Au Nanoshells,' Appl. Phys. Lett., Vol. 86, 113109 https://doi.org/10.1063/1.1874308