Antifungal Activity Against Colletotrichum spp. of Curcuminoids Isolated from Curcuma longa L. Rhizomes

  • Cho Jun-Young (Biological Function Research Team, Korea Research Institute of Chemical Technology, Department of Agricultural Chemistry, College of Agricultural and Life Sciences, Chungnam National University) ;
  • Choi Gyung-Ja (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Lee Seon-Woo (Faculty of Applied Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Jang Kyoung-Soo (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Lim He-Kyoung (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Lim Chi-Hwan (Department of Agricultural Chemistry, College of Agricultural and Life Sciences, Chungnam National University) ;
  • Lee Sun-Og (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Cho Kwang-Yun (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Kim Jin-Cheol (Biological Function Research Team, Korea Research Institute of Chemical Technology)
  • Published : 2006.02.01

Abstract

Methanol extract of the rhizomes of turmeric, Curcuma longa L., effectively controlled the development of red pepper anthracnose caused by Colletotrichum coccodes. In addition three antifungal substances were identified from the methanol extract of C. longa rhizomes as curcumin, demethoxycurcumin, and bisdemethoxycurcumin using mass and $^{1}H-NMR$ spectral analyses. The curcuminoids in a range $0.4-100\;{\mu}g/ml$ effectively inhibited the mycelial growth of three red pepper anthracnose pathogens, C. coccodes, C. gloeosporioides, and C. acutatum. The three curcuminoids inhibited mycelial growth of C. coccodes and C. gloeosporioides to an extent similar to the synthetic fungicide dithianon did, but the synthetic agent was a little more effective against C. acutatum. The curcuminoids also effectively inhibited spore germination of C. coccodes, and bisdemethoxycurcumin was the most active. Among the three curcuminoids, only demethoxycurcumin was effective in a greenhouse test in suppressing red pepper anthracnose caused by C. coccodes.

Keywords

References

  1. Agrios, G. N. 1978. Plant Pathology, pp. 298-301. Academic Press, New York, U.S.A
  2. Almada-Ruiz, E., M. A. Martinez-Tellez, M. Hernandez- Alamos, S. Vallejo, E. Primo-Yufera, and I. Vargas-Arispuro. 2003. Fungicidal potential of methoxylated flavones from citrus for in vitro control of Colletotrichum gloeosporioides, causal agent of anthracnose disease in tropical fruits. Pest Manag. Sci. 59: 1245-1249 https://doi.org/10.1002/ps.747
  3. Apisariyakul, A., N. Vanittanakom, and D. Buddhasukh. 1995. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J. Ethnopharmacol. 49: 163-169 https://doi.org/10.1016/0378-8741(95)01320-2
  4. Bautista-Banos, S., M. Hernandez-Lopez, E. Bosquez- Molina, and C. L. Wilson. 2003. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Prot. 22: 1087-1092 https://doi.org/10.1016/S0261-2194(03)00117-0
  5. Cho, S.-J., S. K. Lee, B. J. Cha, Y. H. Kim, and K.-S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223: 47-51 https://doi.org/10.1016/S0378-1097(03)00329-X
  6. Chowdhury, H., S. Walia, and B. S. Saxena. 2000. Isolation, characterization and insect growth inhibitory activity of major turmeric constituents and their derivatives against Schistocerca gregaria (Forsk) and Dysdercus koenigii (Walk). Pest Manag. Sci. 56: 1086-1092 https://doi.org/10.1002/1526-4998(200012)56:12<1086::AID-PS250>3.0.CO;2-X
  7. Gamagae, S. U., D. Sivakumar, R. S. Wilson Wijeratnam, and R. L. C. Wijesundera. 2003. Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Prot. 22: 775-779 https://doi.org/10.1016/S0261-2194(03)00046-2
  8. Gomes, D. C., L. V. Algegrio, M. E. De Lima, L. L. Leon, and C. A. Araujo. 2002. Synthetic derivatives of curcumin and their activity against Leishmania amazonensis. Arzneimittelforschung 52: 120-124
  9. Hong, J. K. and B. K. Hwang. 1998. Influence of inoculum density, wetness duration, plant age, inoculation method, and cultivar resistance on infection of red pepper plants by Colletotrichum coccodes. Plant Dis. 82: 1079-1083 https://doi.org/10.1094/PDIS.1998.82.10.1079
  10. Huang, M. T. 1998. Inhibitory effect of curcumin, chlorogenic, caffeic acid and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoyl phorbol-13-acetate. Cancer Res. 48: 5941-5946
  11. Jeyalakshmi, C. and K. Seetharaman. 1998. Biological control of fruit rot and die-back of chili with plant products and antagonistic microorganisms. Plant Dis. Res. 13: 46-48
  12. Kang, S. W., S. I. Hong, and S. W. Kim. 2005. Identification of Aspergillus strain with antifungal activity against Phytophthora species. J. Microbiol. Biotechnol. 15: 227- 233
  13. Kelkhar, N. C. and B. S. Rao. 1934. Studies in Indian essential oils from rhizomes of Curcuma longa Linn. J. Indian Inst. Sci. 17A: 7-24
  14. Kim, D. S. H. L., S.-Y. Park, and J. Y. Kim. 2001. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from ${\beta}A$(1-42) insult. Neurosci. Lett. 303: 57-61 https://doi.org/10.1016/S0304-3940(01)01693-7
  15. Kim, M.-K., G. J. Choi, and H.-S. Lee. 2003. Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J. Agric. Food Chem. 51: 1578-1581 https://doi.org/10.1021/jf0210369
  16. Kim, W. G., E. K. Cho, and E. J. Lee. 1986. Two strains of Colletotrichum gloeosporioides Penz. causing anthracnose on red pepper fruits. Kor. J. Plant Pathol. 2: 107-113
  17. Kuk, J. H., S. J. Ma, J. H. Moon, K. Y. Kim, S. H. Choi, and K. H. Park. 2002. Antibacterial and antifungal activities of a naphthoquinone derivative isolated from the fruits of Catalpa ovata G. $D_{ON}$. J. Microbiol. Biotechnol. 12: 858- 863
  18. Lee, C.-H. and H.-S. Lee. 2005. Antifungal property of dihydroxyanthraquinones against phytopathogenic fungi. J. Microbiol. Biotechnol. 15: 442-446
  19. Mathi, C. K. 1979. The pattern of rhizome yield and their accumulation of commercially important chemical constituents in turmeric during growth and development. Qual. Plant Plant Foods Hum. Nutr. 36: 215-219
  20. Mazumber, A. 1995. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem. Pharmacol. 49: 1165-1170 https://doi.org/10.1016/0006-2952(95)98514-A
  21. Meazza, G., F. E. Dayan, and D. E. Wedge. 2003. Activity of quinones on Colletotrichum species. J. Agric. Food Chem. 51: 3824-3828 https://doi.org/10.1021/jf0343229
  22. Montaldo, A. 1972. Cultivo de raices y tuberculos tropicales, Instituto Interamericano de Ciencias Agricolas de la OEA, Lima, Peru, p. 257
  23. Park, K. S. and C. H. Kim. 1992. Identification, distribution, and etiological characteristics of anthracnose fungi of red red pepper in Korea. Kor. J. Plant Pathol. 8: 61-69
  24. Pedersen, U., P. B. Rasmussen, and S.-O. Lawesson. 1985. Synthesis of naturally occurring curcuminoids and related compounds. Liebigs Ann. Chem. 1557-1569
  25. Ramprasad, C. and M. Sirsi. 1956. Studies on Indian medicinal plants: Curcuma longa Linn - in vitro antibacterial activity of curcumin and the essential oil. J. Sci. Res. Inst. 15: 239-242
  26. Syu, W.-J., C.-C. Shen, M.-J. Don, J.-C. Ou, G.-H. Lee, and C.-M. Sun. 1998. Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J. Nat. Prod. 61: 1531-1534 https://doi.org/10.1021/np980269k