Cloning, Expression, and Characterization of a Hyperalkaline Phosphatase from the Thermophilic Bacterium Thermus sp. T351

  • Choi Jeong-Jin (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Park Jong-Woo (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Shim Hye-Kyung (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Lee Suk-Chan (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kwon Moo-Sik (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Yang Joo-Sung (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Hwang Heon (Department of Biomechatronic Engineering, Sungkyunkwan University) ;
  • Kwon Suk-Tae (Department of Genetic Engineering, Sungkyunkwan University)
  • Published : 2006.02.01

Abstract

The gene encoding Thermus sp. T351 alkaline phosphatase (T351 APase) was cloned and sequenced. The gene consisted of 1,503 bp coding for a protein with 500 amino acid residues including a signal peptide. The deduced amino acid sequence of T351 APase showed relatively low similarity to other Thermus APases. The T351 APase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21 (DE3). The expressed enzyme was purified by heat treatment, and $UNO^{TM}$ Q and $HiTrap^{TM}$ Heparin HP column chromatographies. The purified enzyme exhibited high activity at extremely alkaline pHs, reaching a maximum at pH 12.0. The optimum temperature of the enzyme was $80^{\circ}C$, and the half-life at $85^{\circ}C$ was approximately 103 min. The enzyme activity was found to be dependent on metal ions: the addition of $Mg^{2+}$ and $CO^{2+}$ increased the activity, whereas EDTA inhibited it. With p-nitrophenyl phosphate as the substrate, T351 APase had a Michaelis constant ($K_{m}$) of $3.9{\times}10^{-5}M$. The enzyme catalyzed the hydrolysis of a wide variety of phosphorylated compounds.

Keywords

References

  1. Bradshaw, R. A., F. Cancedda, L. H. Ericsson, P. A. Neumann, S. P. Piccoli, M. J. Schlesinger, K. Shriefer, and K. A. Walsh. 1981. Amino acid sequence of Escherichia coli alkaline phosphatase. Proc. Natl. Acad. Sci. USA 78: 3473- 3477
  2. Chang, C. N., W.-J. Kuang, and E. Y. Chen. 1986. Nucleotide sequence of the alkaline phosphatase gene of Escherichia coli. Gene 44: 121-125 https://doi.org/10.1016/0378-1119(86)90050-8
  3. Chen, P. S., T. Y. Toribara, and H. Warner. 1956. Microdetermination of phosphorus. Anal. Chem. 28: 1756- 1758 https://doi.org/10.1021/ac60119a033
  4. Choi, J. J. and S.-T. Kwon. 2004. Cloning, expression, and characterization of DNA polymerase from hyperthermophilic bacterium Aquifex pyrophilus. J. Microbiol. Biotechnol. 14: 1022-1030
  5. Coleman, J. E. 1992. Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21: 441- 483 https://doi.org/10.1146/annurev.bb.21.060192.002301
  6. Coleman, J. E. and P. Gettins. 1983. Molecular properties and mechanism of alkaline phosphatase, pp. 153-217. In T. Spiro (ed.), Metal Ion in Biology, vol. 5. John Wiley and Sons, New York, U.S.A
  7. Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16: 10881-10890 https://doi.org/10.1093/nar/16.22.10881
  8. Dong, G. and J. G. Zeikus. 1997. Purification and characterization of alkaline phosphatase from Thermotoga neapolitana. Enzyme Microb. Technol. 21: 335-340 https://doi.org/10.1016/S0141-0229(97)00002-1
  9. Gong, N., C. Chen, L. Xie, H. Chen, X. Lin, and R. Zhang. 2005. Characterization of a thermostable alkaline phosphatase from a novel species Thermus yunnanensis sp. nov. and investigation of its cobalt activation at high temperature. Biochim. Biophys. Acta 1750: 103-111 https://doi.org/10.1016/j.bbapap.2005.05.007
  10. Hanahan, D. and M. Meselson. 1980. Plasmid screening at high colony density. Gene 10: 63-67 https://doi.org/10.1016/0378-1119(80)90144-4
  11. Jung, S. E., J. J. Choi, H. K. Kim, and S.-T. Kwon. 1997. Cloning and analysis of the DNA polymerase-encoding gene from Thermus filiformis. Mol. Cells 7: 769-776
  12. Kang, S. K., K. K. Cho, J. K. Ahn, S. H. Kang, K. H. Han, H. G. Lee, and Y. J. Choi. 2004. Cloning and expression of thermostable ${\beta}$-glycosidase gene from Thermus filiformis Wai33 A1 in Escherichia coli and enzyme characterization. J. Microbiol. Biotechnol. 14: 584-592
  13. Kim, E. E. and H. W. Wyckoff. 1991. Reaction mechanism of alkaline phosphatase based on crystal structures. J. Mol. Biol. 218: 449-464 https://doi.org/10.1016/0022-2836(91)90724-K
  14. Kim, Y.-J., T.-S. Park, H.-H. Kim, and S.-T. Kwon. 1997. Purification and characterization of a thermostable alkaline phosphatase produced by Thermus caldophilus GK24. J. Biochem. Mol. Biol. 30: 262-268
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  16. Lee, J.-H., Y.-D. Cho, J. J. Choi, Y.-J. Lee, H.-S. Hoe, H.-K. Kim, and S.-T. Kwon. 2003. High-level expression in Escherichia coli of alkaline phosphatase from Thermus caldophilus GK24 and purification of the recombinant enzyme. J. Microbiol. Biotechnol. 13: 660-665
  17. Lowry, O. H., N. J. Rosebrough, A. J. Farr, and R. J. Randall. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275
  18. Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3: 208-218 https://doi.org/10.1016/S0022-2836(61)80047-8
  19. Maunders, M. J. 1993. Alkaline phosphatase, pp. 331-341. In M. M. Burrell (ed.), Enzymes of Molecular Biology. Humana Press, New Jersey, U.S.A
  20. McComb, R. B., G. N. Bowers, and S. Posen. 1979. Alkaline Phosphatase. Plenum Press, New York, U.S.A
  21. Mori, S., M. Okamoto, M. Nishibori, M. Ichimura, J. Sakiyama, and H. Endo. 1999. Purification and characterization of alkaline phosphatase from Bacillus stearothermophilus. Biotechnol. Appl. Biochem. 29: 235-239
  22. Murphy, J. E., T. T. Tibbitts, and E. R. Kantrowitz. 1995. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. J. Mol. Biol. 253: 604-617 https://doi.org/10.1006/jmbi.1995.0576
  23. Murphy, J. E., X. Xu, and E. R. Kantrowitz. 1993. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase. J. Biol. Chem. 268: 21497-21500
  24. Nielsen, H., J. Engelbrecht, S. Brunak, and G. von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1-6 https://doi.org/10.1093/protein/10.1.1
  25. Onishi, H. R., J. S. Tkacz, and J. O. Lampen. 1979. Glycoprotein nature of yeast alkaline phosphatase: Formation of active enzyme in the presence of tunicamycin. J. Biol. Chem. 254: 11943-11952
  26. Park, T., J.-H. Lee, H.-K. Kim, H.-S. Hoe, and S.-T. Kwon. 1999. Nucleotide sequence of the gene for alkaline phosphatase of Thermus caldophilus GK24 and characteristics of the deduced primary structure of the enzyme. FEMS Microbiol. Lett. 180: 133-139 https://doi.org/10.1111/j.1574-6968.1999.tb08787.x
  27. Plebani, M., D. Bernardi, M. Zaninotto, M. De Paoli, S. Secchiero, and L. Sciacovelli. 1996. New and traditional serum markers of bone metabolism in the detection of skeletal metastases. Clin. Biochem. 29: 67-72 https://doi.org/10.1016/0009-9120(95)02001-2
  28. Reid, T. W. and I. B. Wilson. 1971. E. coli phosphatase, pp. 373-415. In P. D. Boyer (ed.), Enzymes, vol. 4. Academic Press, London, U.K
  29. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York, U.S.A
  30. Shin, H.-J., S.-K. Lee, J. J. Choi, S. Koh, J.-H. Lee, S.-J. Kim, and S.-T. Kwon. 2005. Cloning, expression, and characterization of a family B-type DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum arsenaticum and its application to PCR. J. Microbiol. Biotechnol. 15: 1359-1367
  31. Shine, J. and L. Dalgarno. 1975. Determination of cistron specificity in bacterial ribosomes. Nature 254: 34-38 https://doi.org/10.1038/254034a0
  32. Silhavy, T. J., M. L. Berman, and L. W. Enquist. 1984. Experiments with Gene Fusions. Cold Spring Harbor Laboratory Press, New York, U.S.A
  33. Stec, B., K. M. Holtz, and E. R. Kantrowitz. 2000. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J. Mol. Biol. 299: 1303-1311 https://doi.org/10.1006/jmbi.2000.3799
  34. Studier, F. W. and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113-130 https://doi.org/10.1016/0022-2836(86)90385-2
  35. Suzuki, C., H. Ueda, K. Tsumoto, W. C. Mahoney, I. Kumagai, and T. Nagamune. 1999. Open sandwich ELISA with $V_{H}-/V_{L}$-alkaline phosphatase fusion proteins. J. Immunol. Methods 224: 171-184 https://doi.org/10.1016/S0022-1759(99)00020-4
  36. Wojciechowski, C. L., J. P. Cardia, and E. R. Kantrowitz. 2002. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity. Protein Sci. 11: 903-911 https://doi.org/10.1110/ps.4260102
  37. Yeh, M.-F. and J. M. Trela. 1976. Purification and characterization of a repressible alkaline phosphatase from Thermus aquaticus. J. Biol. Chem. 251: 3134-3139
  38. Zappa, S., J.-L. Rolland, D. Flament, Y. Gueguen, J. Boudrant, and J. Dietrich. 2001. Characterization of a highly thermostable alkaline phosphatase from the euryarchaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 67: 4504-4511 https://doi.org/10.1128/AEM.67.10.4504-4511.2001