Preparation and Analysis of Yeast Cell Wall Mannoproteins, Immune Enhancing Materials, from Cell Wall Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon (School of Life Sciences and Biotechnology, Korea University) ;
  • Yun Cheol-Won (School of Life Sciences and Biotechnology, Korea University) ;
  • Paik Hyun-Dong (Division of Animal Life Science, Kon-Kuk University) ;
  • Kim Seung-Wook (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang Chang-Won (Division of Animal Life Science, Kon-Kuk University) ;
  • Hwang Han-Joon (Department of Food and Biotechnology, Korea University) ;
  • Chang Hyo-Ihl (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2006.02.01

Abstract

Yeast cell wall matrix particles are composed entirely of mannoprotein and ${\beta}-glucan$. The mannoproteins of yeast cell wall can systemically enhance the immune system. We previously purified and analyzed alkali-soluble ${\beta}-glucans$ [${\beta}$-(1,3)- and ${\beta}$-(1,6)-glucans] [10]. In the present study, a wild-type strain was first mutagenized with ultraviolet light, and the cell wall mutants were then selected by treatment with 1.0 mg/ml laminarinase (endo-${\beta}$-(1,3)-D-glucanase). Mannoproteins of Saccharomyces cerevisiae were released by laminarinase, purified by concanavalin-A affinity and ion-exchange chromatography. The results indicated that the mutants yielded 3-fold more mannoprotein than the wild-type. The mannoprotein mass of mutant K48L3 was 2.25 mg/100 mg of yeast cell dry mass. Carbohydrate analysis revealed that they contained mannose, glucose, and N-acetylglucosamine. Saccharomyces cerevisiae cell wall components, mannoproteins, are known to interact with macrophages through receptors, thereby inducing release of tumor necrosis factor alpha ($TNF-{\alpha}$) and nitric oxide. Mannoprotein tractions in the present study had a higher macrophage activity of secretion of $TNF-{\alpha}$ and nitric oxide and direct phagocytosis than positive control ($1{\mu}g$ of lipopolysaccharide). In particular, F1 and F3 fractions in mannoproteins of K48L3 enhanced and upregulated the activity of nitric oxide secretion and macrophage phagocytosis by approximately two- and four-fold, respectively.

Keywords

References

  1. Ballou, L., P. K. Tsai, A. Dell, and C. E. Ballou. 1989. Protein glycosylation defects in the Saccharomyces cerevisiae mnn7 mutant class. Support for the stop signal proposed for regulation of outer chain elongation. J. Biol. Chem. 264: 11857-11864
  2. Caro, L. H., J. H. Vossen, A. F. Ram, H. van den Ende, and F. M. Klis. 1997. In silicio identification of glycosyl-phosphatidylinositol- anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13: 1477- 1489 https://doi.org/10.1002/(SICI)1097-0061(199712)13:15<1477::AID-YEA184>3.0.CO;2-L
  3. Ding, A. H. and D. J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141: 2407-2412
  4. de Nobel, J. G., J. Priem, T. Munnik, and H. van den Ende. 1990. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6: 491-499 https://doi.org/10.1002/yea.320060606
  5. Esteban, A. and J. Meseguer. 2004. Glucan receptor but not mannose receptor is involved in the phagocytosis of Saccharomyces cerevisiae by seabream (Sparus aurata L.) blood leucocytes. Fish Shellfish Immunol. 16: 447- 451 https://doi.org/10.1016/j.fsi.2003.07.004
  6. Fleet, G. H. 1991. Cell walls, pp. 199-210. In: The Yeasts. vol. 4. Academic Press, London
  7. Fedre, K. 1994. Review: Cell wall assembly in yeast. Yeast 10: 851-859 https://doi.org/10.1002/yea.320100702
  8. Fels, A. O., E. L. Abraham, and Z. A. Cohn. 1986. Compartmentalized regulation of macrophage arachidonic acid metabolism. J. Exp. Med. 163: 752-757 https://doi.org/10.1084/jem.163.3.752
  9. Fleet, G. H. and D. J. Manners. 1976. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces. J. Gen. Microbiol. 94: 180-192 https://doi.org/10.1099/00221287-94-1-180
  10. Goundar, R. and V. H. Mulimani. 2004. Purification and characterization of guar galactomannan degrading alpha-galactosidase from Aspergillus oryzae DR-5. J. Microbiol. Biotechnol. 14: 863-867
  11. Ha, C. H., Y. T. Kim, S. T. Lim, C. W. Kim, and H. I. Chang. 2002. Analysis of alkali-soluble glucan produced by Saccharomyces cerevisiae wild-type and mutants. Appl. Microbiol. Biotechnol. 58: 370-377 https://doi.org/10.1007/s002530100824
  12. Hoffman, O. A. and A. H. Limper. 1993. Pneumocystis carinii stimulates tumor necrosis factor-alpha release from alveolar macrophages through a beta-glucan-mediated mechanism. J. Immunol. 150: 3932-3940
  13. Ito, H., S. Kuroda, H. Sakamoto, J. Kajihara, T. Kiyota, H. Hayashi, M. Kato, and M. Seko. 1986. Molecular cloning and expression in Escherichia coli of the cDNA coding for rabbit tumor necrosis factor. DNA 5: 149-156 https://doi.org/10.1089/dna.1986.5.149
  14. Jamas, S., C. K. Rha, and A. J. Sinskey. 1986. Morphology of yeast cell wall as affected by genetic manipulation of (1-6) glycosidic linkage. Biotech. Bioeng. 28: 769-784 https://doi.org/10.1002/bit.260280102
  15. Kollar, R., B. B. Reinhold, E. Petrakova, H. J. Yeh, G. Ashwell, J. Drgonova, J. C. Kapteyn, F. M. Klis and E. Cabib. 1997. Architecture of the yeast cell wall. Beta$(1{\rightarrow}6)$-glucan interconnects mannoprotein, beta$(1{\rightarrow})$3-glucan, and chitin. J. Biol. Chem. 272: 17762-17775 https://doi.org/10.1074/jbc.272.28.17762
  16. Koh, J. H., J. M. Kim, and H. J. Suh. 2003. Immune enhancing effect by orally-administered mixture of Saccharomyces cerevisiae and fermented rice bran. J. Microbiol. Biotechnol. 13: 196-201
  17. Kramer, S. M. and M. E. Carver. 1986. Serum-free in vitro bioassay for the detection of tumor necrosis factor. J. Immunol. Methods 93: 201-208 https://doi.org/10.1016/0022-1759(86)90189-4
  18. Kozel, T. R., A. Percival, and Q. Zhou. 2004. Biological activities of naturally occurring antibodies reactive with Candida albicans mannan. Infect. Immun. 72: 209-218 https://doi.org/10.1128/IAI.72.1.209-218.2004
  19. Kurihara, K., N. N. Miura, S. Horie, Y. Usui, Y. Adachi, T. Yadomae, and N. Ohno. 2003. Effect of CAWS, a mannoprotein-beta-glucan complex of Candida albicans, on leukocyte, endothelial cell, and platelet functions in vitro. Biol. Pharm. Bull. 26: 233-240 https://doi.org/10.1248/bpb.26.233
  20. Lee, J. N., I. H. Ji, G. E. Kim, H. N. Kim, J. W. Sohn, S. D. Kim, and C. W. Kim. 2001. Purification of soluble beta glucan with immune enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem. 65: 837- 841 https://doi.org/10.1271/bbb.65.837
  21. Lu, C. F., R. C. Montun, J. L. Brown, F. Kiis, J. Kurjan, H. Bussey, and P. N. Lipke. 1995 Glycosyl phosphatidylinositol-dependent cross-linking of agglutinin and (1,6)-glucan in the Saccharomyces cerevisiae cell wall. J. Cell Biol. 128: 333- 340 https://doi.org/10.1083/jcb.128.3.333
  22. Mrsa, V. and S. Barbaric. 1992. Binding of Saccharomyces cerevisiae extracellular proteins to glucane. Arch Biochem. Biophys. 296: 569-574 https://doi.org/10.1016/0003-9861(92)90612-Z
  23. Mrsa, V. and W. Tanner. 1999. Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 15: 813-820 https://doi.org/10.1002/(SICI)1097-0061(199907)15:10A<813::AID-YEA421>3.0.CO;2-Y
  24. McCammon, M. T. and L. W. Parks. 1982. Enrichment for auxotrophic mutants in Saccharomyces cerevisiae using the cell wall inhibitor, echinocandin B. Mol. Gen. Genet. 186: 295-297 https://doi.org/10.1007/BF00331865
  25. Marletta, M. A. 1989. Nitric oxide: Biosynthesis and biological significance. Trends Biochem. Sci. 14: 488-493 https://doi.org/10.1016/0968-0004(89)90181-3
  26. Roman, K., E. Petrakova, H. J. Yeh, G. Ashwell, J. Drgonova, J. C. Kapteyn, F. M. Klis, and E. Cabib. 1997. Architecture of the yeast cell wall. J. Biol. Chem. 272: 17762-17775 https://doi.org/10.1074/jbc.272.28.17762
  27. Sakurai, T. and T. Yadomae. 1999. Effects of fungal glucan and interferon on the secretory functions of murine alveolar macrophages. J. Leuk. Biol. 60: 118-124
  28. Schnyder, J. and M. Baggiolini. 1978. Role of phagocytosis in the activation of macrophages. J. Exp. Med. 148: 1449- 1454 https://doi.org/10.1084/jem.148.6.1449
  29. Schnyder, J. and M. Baggiolini. 1978. Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages. J. Exp. Med. 148: 435-439 https://doi.org/10.1084/jem.148.2.435
  30. Schnyder, J. and M. Baggiolini. 1980. Induction of plasminogen activator secretion in macrophages by electrochemical stimulation of the hexose monophosphate shunt with methylene blue. Proc. Natl. Acad. Sci. USA 77: 414- 419
  31. Shibata, N., K. Mizugami, K. Takano, and S. Suzuki. 1983. Isolation of mannan-protein complexes from viable cells of Saccharomyces cerevisiae X2180-1A wild type and Saccharomyces cerevisiae X2180-1 A-5 mutant strains by the action of zymolyase-60,000. J. Bacteriol. 156: 552-558
  32. Van Rinsum, J. and H. van den Ende. 1991. Cell wall glucomannoproteins of Saccharomyces cerevisiae mnn9. Yeast 7: 717-726 https://doi.org/10.1002/yea.320070707
  33. Van Berkel, M. A., R. C. Montijn, and F. M. Klis. 1994. Glycosylation of chimaeric proteins in the cell wall of Saccharomyces cerevisiae. FEBS Lett. 349: 135-138 https://doi.org/10.1016/0014-5793(94)00631-8
  34. Yim, S. B. and Y. H. Chung. 2004. Construction and production of concatameric human TNF receptor-immunoglobulin fusion proteins. J. Microbiol. Biotechnol. 14: 81-89
  35. Yu, K. W., K. S. Shin, Y. M. Choi, and H. J. Suh. 2004. Macrophage stimulating activity of exo-biopolymer from submerged culture of Lentinus Edodes with rice bran. J. Microbiol. Biotechnol. 14: 658-664