Temporal and Spatial Variations of Size-structured Phytoplankton in the Asan Bay

아산만 식물플랑크톤 크기구조의 시.공간적 변동

  • Hyun Bong-Kil (Division of Ocean System Engineering, Mokpo National Maritime University) ;
  • Sin Yong-Sik (Division of Ocean System Engineering, Mokpo National Maritime University) ;
  • Park Chul (Department of Oceanography, Chungnam National University) ;
  • Yang Sung-Ryull (Department of Environmental Engineering, Kwangju University) ;
  • Lee Young-Joon (Youngsan-River Environment Research Laboratory, National Institute of Environmental Research)
  • 현봉길 (목포해양대학교 해양시스템공학부) ;
  • 신용식 (목포해양대학교 해양시스템공학부) ;
  • 박철 (충남대학교 해양학과) ;
  • 양성렬 (광주대학교 환경공학과) ;
  • 이영준 (국립환경연구원 영산강물환경연구소)
  • Published : 2006.03.01

Abstract

Samples were collected from five stations monthly from October 2003 to September 2004 to investigate seasonal variation of size structure of phytoplankton and relationship between size-fractionated phytoplankton and environmental factors in the Asan Bay. The contribution of large cells (microphytoplankton, $>20\;{\mu}m$) to total concentrations of chlorophyll $\alpha$ was higher than small cells (nanophytoplankton, $3\sim20\;{\mu}m$; picophytoplankton, $<3\;{\mu}m$) during the sampling period. Especially, large cells contributed 80% to the total chlorophyll a from February, 2004 to April 2004 when chlorophyll $\alpha$ concentrations were high. The size structure of phytoplankton shifted from micro-size class to nano-size class and picophytoplankton rapidly increased when phytoplankton biomass decreased in May 2004. Microphytoplankton exhibited a high biomass in the upper region during winter-spring season whereas nano- and picophytoplankton showed two peaks in the middle-lower regions (Station 3,5) during spring and summer. Microphytoplankton are most likely controlled by water temperature and nutrient supply during the cold season whereas nano- and picophytoplankton may be affected by stratification, light exposure during the warm season.

아산만에서 크기별 식물플랑크톤의 계절적인 변동과 크기 구조에 따른 식물플랑크톤과 환경인자와의 상관성을 조사하기 위해 2003년 10월부터 2004년 9월까지 매월 5개의 조사 정점에서 현장조사를 실시하였다. 조사기간 동안 전체 엽록소 $\alpha$ 농도에 대해서 크기가 큰 세포들(소형 식물플랑크톤, $>20\;{\mu}m$)은 크기가 작은 세포들(미소식물플랑크톤, $3\sim20{\mu}\;m;$ 초미세 식물플랑크톤, $<3{\mu}\;m$)보다 더 높은 점유율을 나타내었다. 특히 엽록소 a 농도가 높았던 2004년 2월부터 4월까지 크기가 큰 세포들은 전체 엽록소 $\alpha$ 대하여 80% 이상 점유율을 보였다. 식물플랑크톤 생체량이 감소했던 5월 소형식물플랑크톤에서 미소식물플랑크톤으로 크기 구조의 변동이 일어났으며, 초미세 식물플랑크톤의 생체량도 급격히 증가하였다. 겨울과 봄철동안 소형식물플랑크톤은 상류지역에서 높은 생체량 분포를 보였으며, 미소와 초미세 식물플랑크톤은 봄과 여름철 중류와 하류(정점 3, 5)에서 높은 생체량 분포를 나타내었다. 소형식물플랑크톤은 추운 계절 동안 수온과 영양염의 공급에 의해서 조절되어지는 반면에 미소와 초미세 식물플랑크톤은 따듯한 계절 동안 성층과 빛에 노출 등에 의해서 영향을 받는 것으로 판단된다.

Keywords

References

  1. 권기영,문창호,이재성,양성렬,박미옥,이필용. 2004. 섬진강 하구역에서 영양염의 하구내 거동과 플럭스. 한국해양 학회지 (바다).9:153-163
  2. 문창호,박철,이승용. 1993. 아산만의 영양염 및 입자성 유기물. 한국수산학회지. 26:173-181
  3. 신용식,서호영,현봉길. 2005. 해수층의 염분 변화가 일차생산자와 상위소비자의 크기구조에 미치는 영향. 한국해양학회지.10:113-123
  4. 이상현,신용식. 양성렬,박철. 2005. 아산만 식물플랑크톤의 계절별 군집분포 특성. Ocean Polar Res. 27: 149-159 https://doi.org/10.4217/OPR.2005.27.2.149
  5. 이태원 1991. 아산만 저어류 I. 적정 채집 방법. 한국수산학회지 26:424-437
  6. 양은진,최중기. 2003. 경기만 수역에서 미세생물 군집의 계 절적 변동 연구 II. 미소형 및 소형 동물플랑크톤. 한국 해양학회지. 8:78-93
  7. Beers JR and GL Stewart. 1971. Microzooplankters in the plankton communities of the upper waters of the eastern tropical Pacific. Deep Sea Res. 18:861-883
  8. Boyer JP, RR Christian and DW Stanley. 1993. Patterns phytoplankton primary productivity in the Neuse River estuary, North Carolina, USA. Mar. Ecol. Prog. Ser. 97: 287-297 https://doi.org/10.3354/meps097287
  9. Boynton WR, WM Kemp and CW Keef. 1982. A comparitive analysis of nutrient and other factors influencing estuarine phytoplankton, pp.69-90. In. V. Kennedy (ed), Estuarine Comparisons. Academic Press, New York
  10. Chisholm SW. 1992. Phytoplankton size. In Falkowski, P.G. and Woodhead, A. D. (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, pp. 213-237
  11. Cloern JE, AE Alpine, BE Cole, RLJ Wong, JF Arthur and MD Ball. 1983. River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary. Estuar. Coast. Shelf Sci. 16:415-429 https://doi.org/10.1016/0272-7714(83)90103-8
  12. Goldman JC and JH Ryther. 1976. Temperature-influenced species competition in mass cultures of marine phytoplankton. Biotechnol. Bioeng. 18: 1125-1144 https://doi.org/10.1002/bit.260180809
  13. Harper, D. 1992. Eutrophication of freshwater. Principles, problems and restoration. Chapman and Hall, London. p. 329
  14. Hein M, MF Pedersen and K Sand-Jensen. 1995. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser. 118:247-253 https://doi.org/10.3354/meps118247
  15. Kemp WM and WR Boynton. 1981. External and internal factors regulating metabolic roles of an estuaries benthic community. Oecologia 51: 19- 27 https://doi.org/10.1007/BF00344646
  16. Krik JTO. 1994. Light and Photosynthesis in Aquatic Ecosystems. P. 75-77. Cambridge University Press, Cambridge, England
  17. Loftus ME, DV Subba Rao and HH Seliger. 1972. Growth and dissipation of phytoplankton in Chesapeake Bay. I. Response to a large pulse of rainfall. Chesapeake Sci. 13:282-99 https://doi.org/10.2307/1351112
  18. Malone TC. 1992. Effects of water column precesses on dissolved oxygen, nutrients, phytoplankton, and zooplankton, pp.61-112. In D.E. Smith, M. Leffler, and G. Mackiernan (eds.), Oxygen Dynamics in the Chesapeake Bay: A Synthesis of Research. Maryland Sea Grant College, College Park, Maryland
  19. Malone TC, LH Crocker, SE Pike and BW Wendler. 1988. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Mar. Ecol. Prog. Ser. 48:235-249 https://doi.org/10.3354/meps048235
  20. Malone TC and PJ Neale. 1981. Parameters of light-dependent photosynthesis for phytoplankton size fractions in temperate estuarine and coastal environments. Mar. Bio. 61: 289-297 https://doi.org/10.1007/BF00401568
  21. Malone TC and Chervin MB. 1979. The production and fate of phytoplankton size fractions in the plume of Hudson River, New York Bight. Limnol. Oceanogr. 24:683-696 https://doi.org/10.4319/lo.1979.24.4.0683
  22. Malone TC. 1977. Light-saturated photosynthesis by phytoplankton size fractions in the New York Bight. USA. Mar. Biol. 42:281-292 https://doi.org/10.1007/BF00402190
  23. McCarthy JJ, WR Taylor and ME Loftus. 1974. Significance of nanoplankton in the Chesapeake Bay estuary and problems associated with the measurement of nanoplankton productivity. Mar. Biol. 24:7-16 https://doi.org/10.1007/BF00402842
  24. Park C, KH Choi and CH Moon. 1991. Distribution of zooplankton in Asan Bay, Korea with Comments on Vertical Migration. Bull. Korean Fish. Soc. 24:472-482
  25. Parsons TR, Y Maita and CM Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press. 173pp
  26. Sin YS and J Kim. 2003. Relative importance of Bottom-up vs. Top-down Controls on Size-structured Phytoplankton Dynamics in a Freshwater Ecosystem: I. Temporal and Spatial Variations of Size Structure. Korean J. Limmol. 36 :403-412
  27. Strickland JDH, RW Eppley and BR De Mendiola. 1969. Phytoplankton populations,nutrients and photosynthesis in Peruvian coastal waters. Inst. Mar. Preu (Callav) Bol. 2:445
  28. Sundback K, B Joensseon, P Nilsson and I Lindstroem. 1990. Impact of accumulating drifting macroalgae on a shallowwater sediment system: An experimental study. Mar. Ecol. Prog. Ser. 58:261-274
  29. Thurman HV and AP Trujillo. 1999. Essentials of Oceanography. Prentice-Hall, Inc. pp. 374-375