DOI QR코드

DOI QR Code

Time-Lapse Video Microscopy of Wound Recovery and Reproduction in the Siphonous Green Alga Derbesia tenuissima

  • Published : 2006.03.31

Abstract

Responses to various types of mechanically induced wounding were followed in the giant-celled Caulerpalean species, Derbesia tenuissima, using time-lapse video-microscopy. Gametophyte vesicle cells. Puncture wounding: the gametophyte cell seals the puncture in 5 min. This is followed by cycles of ruptures and sealing, ending with full recovery in 24 hrs. Cut wounding: the protoplast immediately retracts away from the wall and reforms an intact, deflated protoplast that expands to fill the original cell within 21 hrs. Crush wounding (internal). When retained within the cell wall many protoplast fragments condense, round up, and coalesce; the reconstituted protoplast expands until it attains complete recovery, filling the original cell shape in 12 hrs. Crush wounding (external). Protoplast fragments extruded from the crushed cell are more numerous and smaller taking longer to recover. Most fragments become spherical, transforming into small viable cells capable of reproduction in several days. Sporophyte filaments. Crush wounding creates many small fragments that initially condense, coalesce and then expand within the wall to restore a complete filament with normal cytoplasmic streaming within 5 hrs. Reproduction: gametophyte. Our culture isolates produce more females than males (30:1). Gametangia develop one day before discharge that occurs explosively (1/6 sec) at first morning light. The vesicle cell forms successive gametangia every 14 days. Sporophyte. Each sporangium develops on a lateral branch that becomes isolated by the creation of successive basal plugs. After cytoplasmic cleavage and differentiation the stephanokont spores are discharged. The spores settle quickly and germinate forming gametophyte cells.

Keywords

References

  1. Borgesen F. 1913. The marine algae of the Danish West Indies. I. Chlorophyceae. Dansk Bot. Arkiv. 1: 1-158
  2. Burr F.A. and West J.A. 1971. Protein bodies in Byopsis hypnoides: Their relationship to wound-healing and branch septum development. J. Ultrastr. Res. 35: 476-498 https://doi.org/10.1016/S0022-5320(71)80006-0
  3. Dreher T.W., Grant B.R. and Wetherbee R. 1978. The wound response in the siphonous alga Caulerpa simpliciuscula C. Ag.: Fine structure and cytology. Protoplasma 96: 189-203 https://doi.org/10.1007/BF01279585
  4. Dreher T.W., Hawthorne D.B. and Grant B.R. 1982. The wound response of the siphonous green algal genus Caulerpa III: Composition and origin of the wound plugs. Protoplasma 110: 129-137 https://doi.org/10.1007/BF01281539
  5. Eckhardt R., Schnetter R. and Seibold G. 1986. Nuclear behavior during the life cycle of Derbesia (Chlorophyta). Br. Phycol. J. 21: 287-295 https://doi.org/10.1080/00071618600650341
  6. Enomoto S. and Okuda K. 1981. Cultural studies of Dictyosphaeria (Chlorophyceae, Siphonocladales) I. Life history and morphogenesis of Dictyosphaeria cavernosa. Jpn. J. Phycol. 29: 225-236
  7. Feldmann J. 1950. Sur l'existance d'une alternance de generations entre l'Halicystis parvula et le Derbesia tenuissima (De Not.) Crn. Comp. Rend. Acad. Sci. Paris 230: 322-323
  8. Fritsch F.E. 1945. The structure and reproduction of the algae, 1. Cambridge University Press, Cambridge
  9. Graham L.E. and Wilcox L.W. 2000. Algae. Prentice-Hall, Inc., NJ
  10. Hoek C. van den, Mann D.G. and Jahns H.M. 1995. Algae: an introduction to phycology. Cambridge University Press, Cambridge
  11. Kim G.H., Klochkova T.A., Yoon K-S., Song Y.-S. and Lee K.P. 2006. Purification and characterization of a lectin, bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumosa (Chlorophyta). J. Phycol. 42: 86-95 https://doi.org/10.1111/j.1529-8817.2006.00162.x
  12. Kim G.H., Klotchkova T.A. and Kang Y.-M. 2001. Life without a cell membrane: regeneration of protoplasts from disintegrated cells of the marine green alga Bryopsis plumosa. J. Cell Sci. 114: 2009-2014
  13. Kim G.H., Klotchkova T.A. and West J.A. 2002. From protoplast to swarmer: regeneration of protoplasts from disintegrated cells of the multicellular marine green alga Microdictyon umbilicatum (Chlorophyta). J. Phycol. 38: 174-183 https://doi.org/10.1046/j.1529-8817.2002.01053.x
  14. Klemm P. 1894. Uber die Regenerationsvorgange bei den Siphonaceen. Flora 78: 19-41
  15. Klotchkova T.A., Chah O.-K., West J.A. and Kim G.H. 2003. Cytochemical and ultrastructural studies on protoplast formation from disintegrated cells of the marine alga Chaetomorpha aerea (Chlorophyta). Eur. J. Phycol. 38: 205-216 https://doi.org/10.1080/0967026031000136330
  16. Kobayashi K. and Kanaizuka Y. 1985. Reunification of sub-cellular fractions of Bryopsis into viable cells. Plant Sci. 40: 129-135 https://doi.org/10.1016/0168-9452(85)90053-6
  17. Kornmann P. 1938. Zur Entwicklungsgeschichte von Derbesia and Halicystis. Planta 25: 464-470
  18. Lee S.-H., Motomura T. and Ichimura T. 1998. Karyogamy follows plasmogamy in the life cycle of Derbesia tenuissima (Chlorophyta). Phycologia 37: 330-333 https://doi.org/10.2216/i0031-8884-37-5-330.1
  19. Lee S.-H., Motomura T. and Ichimura T. 2000. Nuclear phase alternation in the life cycle of Derbesia (Chlorophyta). Phycologia 39: 441-447 https://doi.org/10.2216/i0031-8884-39-5-441.1
  20. Lee S.-H., Motomura T. and Ichimura T. 2001. Is the life cycle of Derbesia (Chlorophyta) heterokaryotic? - Response to the commentary of Schnetter and Eckhardt (2000). Phycologia 40: 381-385 https://doi.org/10.2216/i0031-8884-40-4-381.1
  21. Lee S.-H., Motomura T. and Ichimura T. 2002. Light and electron microscopic observations of preferential destruction of chloroplast and mitochondrial DNA at early male gametogenesis of the anisogamous green alga Derbesia tenuissima (Chlorophyta). J. Phycol. 38: 534-542 https://doi.org/10.1046/j.1529-8817.2002.t01-1-01212.x
  22. Lee S.-H., Motomura T. and Ichmura T. 2003. Ultrastructural study of zoosporogenesis in the siphonous green alga Derbesia tenuissima (Chlorophyta). Bot. Mar. 46: 438-449 https://doi.org/10.1515/BOT.2003.044
  23. McNaughton E.E. and Goff L.J. 1990. The role of microtubules in establishing nuclear spatial patterns in multinucleate green algae. Protoplasma 157: 19-37 https://doi.org/10.1007/BF01322636
  24. Menzel D. 1979. Plug formation in Derbesia/Halicystis. Eur. J. Cell Biol. 20: 132
  25. Menzel D. 1980. Plug formation and peroxidase accumulation in two orders of siphonous green algae (Caulerpales and Dasycladales) in relation to fertilisation and injury. Phycologia 19: 37-48 https://doi.org/10.2216/i0031-8884-19-1-37.1
  26. Menzel D. 1987. The cytoskeleton of the giant coenocytic green alga Caulerpa visualized by immunocytochemistry. Protoplasma 139: 71-76 https://doi.org/10.1007/BF01282277
  27. Menzel D. 1988. How do giant plant cells cope with injury? - The wound response in siphonous green algae. Protoplasma 144: 73-91 https://doi.org/10.1007/BF01637240
  28. Menzel D. and Elsner-Menzel C. 1989. Actin-based chloroplast rearrangements in the cortex of the giant coenocytic green alga Caulerpa. Protoplasma 150: 1-8 https://doi.org/10.1007/BF01352915
  29. Menzel D. and Schliwa M. 1986a. Motility in the siphonous green alga Bryopsis. I. Spatial organization of the cytoskeleton and organelle movements. Eur. J. Cell Biol. 40: 275-285
  30. Menzel D. and Schliwa M. 1986b. Motility in the siphonous green alga Bryopsis. II. Chloroplast movement requires organized arrays of both microtubules and actin filaments. Eur. J. Cell Biol. 40: 286-295
  31. Nawata T., Kikuyama M. and Shihira-Ishikawa I. 1993. Behaviour of protoplasm for survival in injured cells of Valonia ventricosa: involvement of turgor pressure. Protoplasma 176: 116-124 https://doi.org/10.1007/BF01378947
  32. Neumann K. 1969. Beitrag zur cytologie und entwicklung der siphonalen grunalge Derbesia marina. Helgoland. wiss. Meer. 19: 355-375 https://doi.org/10.1007/BF01611976
  33. Neumann K. 1974. Entwicklungsgeschichte und systematik der siphonalen grunalgen Derbesia und Bryopsis. Bot. Mar. 17: 176-85 https://doi.org/10.1515/botm.1974.17.3.176
  34. Okuda K., Mine I., Morinaga T. and Kuwaki N. 1997. Cytomorphogenesis in coenocytic green algae. V. Segregative cell division and cortical microtubules in Dictyosphaeria cavernosa (Siphonocladales, Chlorophyceae). Phycol. Res. 45: 189-96 https://doi.org/10.1111/j.1440-1835.1997.tb00075.x
  35. Page J.Z. and Kingsbury J.M. 1968. Culture studies on the marine green alga Halicystis parvula . Derbesia tenuissima. II. Synchrony and periodicity in gamete formation and release. Am. J. Bot. 55: 1-11 https://doi.org/10.2307/2440485
  36. Page J.Y. and Sweeney B.M. 1968. Culture studies on the marine green alga Halicystis parvula - Derbesia tenuissima. III. Control of gamete formation by an endogenous rhythm. J. Phycol. 4: 253-260 https://doi.org/10.1111/j.1529-8817.1968.tb04693.x
  37. Pak J.Y., Solorzano C., Arai M. and Nitta T. 1991. Two distinct steps for spontaneous generation of subprotoplasts from a disintegrated Bryopsis cell. Plant Physiol. 96: 819-825 https://doi.org/10.1104/pp.96.3.819
  38. Pickett-Heaps J. and West J.A. 1998. Time-lapse video observations on sexual plasmogamy in the red alga Bostrychia. Eur. J. Phycol. 33: 43-56 https://doi.org/10.1080/09670269810001736523
  39. Rietema H. 1973. The influence of day length on the morphology of the Halicystis parvula phase of Derbesia tenuissima (De Not.) Crn. (Chlorophyceae, Caulerpales). Phycologia 12: 11-16 https://doi.org/10.2216/i0031-8884-12-1-11.1
  40. Ruzin S.E. 1999. Plant microtechnique and microscopy. Oxford University Press Inc., New York
  41. Satoh T., Sakurai N. and Okuda K. 2000. Cytomorphogenesis in coenocytic green algae. VI. Dynamic changes in the actin cytoskeleton during wound-induced contraction in Valonia utricularis. Hikobia 13: 153-161
  42. Schnetter R. and Eckhardt R. 2000. Does karyogamy follow plasmogamy in the life cycle of Derbesia tenuissima (Chlorophyta)? Phycologia 39: 355-357 https://doi.org/10.2216/i0031-8884-39-4-355.1
  43. Shihira-Ishikawa I. 1987. Cytoskeleton in cell morphogenesis of the coenocytic green alga Valonia ventricosa I. Two microtubule systems and their roles in positioning of chloroplasts and nuclei. Jpn. J. Phycol. 35: 251-258
  44. Shihira-Ishikawa I. 1992. The structure and physiological properties of the cytoplasm in intact Valonia cells. Jpn. J. Phycol. 40: 151-159
  45. West J.A. and McBride D.L. 1999. Long-term and diurnal carpospore discharge patterns in the Ceramiaceae, Rhodomelaceae and Delesseriaceae (Rhodophyta). Hydrobiologia 398/399: 101-113 https://doi.org/10.1023/A:1017025815001
  46. Wheeler A.E. and Page J.Z. 1974. The ultrastructure of Derbesia tenuissima (De Notaris) Crouan. I. Organization of the gametophyte protoplast, gametangium and gametangial pore. J. Phycol. 10: 336-352
  47. Wood P.J. 1980. Specificity in the interaction of direct dyes with polysaccharides. Carbohyd. Res. 85: 271-287 https://doi.org/10.1016/S0008-6215(00)84676-5
  48. Ziegler J.R. and Kingsbury J.M. 1964. Cultural studies on the marine green alga Halicystis parvula - Derbesia tenuissima. I. Normal and abnormal sexual and asexual reproduction. Phycologia 4: 105-116 https://doi.org/10.2216/i0031-8884-4-2-105.1

Cited by

  1. Purification and characterization of a lectin, BPL-3, from the marine green alga Bryopsis plumosa vol.23, pp.4, 2011, https://doi.org/10.1007/s10811-010-9575-x
  2. Research note: Induction of gamete discharge by hypertonic treatment in the green alga Bryopsis plumosa (Caulerpales, Chlorophyta) vol.59, pp.1, 2011, https://doi.org/10.1111/j.1440-1835.2010.00601.x