DOI QR코드

DOI QR Code

Lipogenesis Gene Expression Profiling in Longissimus dorsi on the Early and Late Fattening stage of Hanwoo

한우 비육 전·후기의 등심조직에 있어서 지방합성 유전자 발현

  • Published : 2006.06.30

Abstract

Korean native cattle (Hanwoo) have a good capacity to produce heavily marbled meat of high value. The intramuscular fat in Hanwoo is known to be deposit from 12 months of age by degree of slightly visible and significantly developed in 28 months of age. Lipogenesis gene expression profiling in longissimus dorsi at early and late fattening stage will be helpful to understand the mechanism of intramuscular fat deposition in skeletal muscle. Therefore, we analysed the gene expression patterns of six genes related lipid metabolism (FABP4, GLUT4, LPL, ACC, ACL and SCD) between early and late fattening stage. The mRNA expression of FABP4 at late fattening stage (27 months old) was higher about 3.0 fold than at early fattening stage (12 months old) in each three individuals of Hanwoo. However, GLUT4 mRNA expression was not different at late fattening stage compared with at early fattening stage. On the other hand, The expression patterns of LPL, ACC, ACL and SCD genes related lipid metabolism were significantly over-expressed about 3.5 fold, 2.7 fold, 3.7 fold and 7.5 fold at late fattening stage, respectively. Thus, these results suggested that lipogenesis in skeletal muscle at late fattening stage is due to increasing uptake of fatty acid by FABP4 and lipogenesis gene expression such as LPL, ACC, ACL and SCD.

지방합성이 왕성하게 진행되는 비육후기의 근육내 지방합성에 있어서, 지방산 및 당의 이용경로 및 이에 따른 근육내 지방합성과정을 규명하기 위해서 지방산 및 당 운반 유전자인 FABP4, GLUT4와 근육내 지방대사 주요유전자인 ACL, ACC, LPL 및 SCD 유전자의 mRNA 발현양상을 분석하였다. 한우 비육전기 및 후기 각 3두를 공시하여 total RNA 추출 및 1st cDNA 합성하여 SYBR green을 이용하여 real-time PCR 분석을 각 유전자별로 3반복씩 수행하였다. FABP4 유전자는 비육전기에 비해 비육후기에 있어서, 3배 이상 유전자 발현이 증가함을 확인할 수 있었고, GLUT4 유전자는 비육전기 및 비육후기에서 큰 차이를 보이지 않았다. 또한 근육내 지방합성 주요유전자인 ACL, ACC, LPL 및 SCD 유전자의 발현량은 비육후기에서 ACL 유전자가 3.8배, ACC 유전자는 2.7배, LPL 유전자는 3.5배, 그리고 SCD 유전자는 7.5배 발현량이 증가하였다. 따라서 본 연구를 통하여 한우의 비육후기에서 근육내 지방합성은 FABP4에 의한 지방산 유입의 증가와 더불어 ACL 유전자에 의해서 지방산 합성의 중간대사물인 acetyl-CoA가 합성되고, 이 중간 대사물을 이용하여 ACC 및 SCD 유전자에 의해서 긴 사슬 지방산 합성이 왕성하게 일어남을 알 수 있었다.

Keywords

References

  1. Beigneux, A. P., Kosinski, C., Gavino, B., Horton, J. D., Skarnes, W. C. and Young, S. G. 2004. ATP-citrate lyase deficiency in the mouse. J. BioI. Chem. 279:9557-9564 https://doi.org/10.1074/jbc.M310512200
  2. Cheema, S. K. and Ciandinin, M. T. 1996. Fat alters expression of genes for enzymes of lipogenesis in lean and obese mice. Biochim. Biophys. Acta. 1299:284-288 https://doi.org/10.1016/0005-2760(95)00219-7
  3. Childs, K. D., Goad, D. W., Allan, M. F., Pomp, D., Krehbiel, C., Geisert, R. D., Morgan, JB., and Malayer, JR. 2002. Differential expression of NATl translational repressor during development of bovine intramuscular adipocytes. Physiol. Genomics. 10:49-56 https://doi.org/10.1152/physiolgenomics.00095.2001
  4. Coyle, E. F., Jeukendrup, A. E., Oseto, M. C., Hodgkinson, B. J. and Zderic, T. W. 2001. Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise. Am. J. Physiol. Endocrinol. Metab. 280: E391-E398
  5. Eckel, R. H. 1989. Lipoprotein lipase. A Multifunctional Enzyme Relevant to Common Metabolic Diseases. New Eng. J. Med. 320:1060-1068 https://doi.org/10.1056/NEJM198904203201607
  6. Evans, JL and Witters, LA. 1988. Quantitation by irnmunoblotting of the in vivo induction and subcellular distribution of hepatic acetyl-CoA carboxylase. Arch. Biochem. Biophys. 264: 103-113 https://doi.org/10.1016/0003-9861(88)90575-9
  7. Garland, P. B., Newsholme, E. A. and Randle, P. J. 1964. Regulation of glucose uptake by muscle: effect of fatty acid and ketone bodies, and of alloxan-diabetes and stavation, on pyruvate metabolism and on lactate/pyruvate and L-glycerol 3-phosphate/ dihydroxyacetone phosphate concentration ratios in rat heart and rat diaphragm muscle. Biochem. J. 93:665-678 https://doi.org/10.1042/bj0930665
  8. Gerbens, F., Jansen, A., Anton, J. M., Harders, F., Meuwissen, T. H. E., Rettenberger, G., Veerkamp, J. H. and te Pas, M. F. W. 1998. The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. J. Anim. Sci. 9:1022-1026.
  9. Hegarty, B. D., Furler, S. M., Ye, J., Cooney, G. J. and Kraegen, E. W. 2003. The role of intramuscular lipid in insulin resistance. Acta. Physiol. Scand, 178:373-383 https://doi.org/10.1046/j.1365-201X.2003.01162.x
  10. Jeukendrup, A. E. 2002. Regulation of fat metabolism in skeletal muscle. Ann. N Y Acad. Sci. 967:217-235 https://doi.org/10.1111/j.1749-6632.2002.tb04278.x
  11. JMGA. 1988. New beef carcass grading. standards Japan Meat Grading Association, Tokyo, Japan
  12. Kaestner, K H., Ntambi, J. M., Kelly, T. J. and Lane, M. D. 1989. Differentiation-induced gene expression In 3T3-Ll preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J. BioI. Chem. 264:14755-14761
  13. Kiens, B. 1998. Utilization of skeletal muscle triacylglycerol during postexercise recovery in human. Am. J. Physiol. 275:E332-E337
  14. Kraegen, E. W. and Cooney, G. J. 1999. The role of free fatty acids in muscle insulin resistance. Diabetes Ann. 12:141-159
  15. Lee, S. H., Yoon, D. H., Choi, N. J., Hwang, S. H., Cheong, E. Y., Oh, S. J., Cheong, L. C and Lee, C. S. 2005. Developmental Relationship of Unsaturated fatty acid composition and stearoylcoA desaturase mRNA level in Hanwoo steers muscle. Asian-Aust. J. Anim. Sci. 18:562-566 https://doi.org/10.5713/ajas.2005.562
  16. Murray, R. K., Granner, D. K., Mayes, P. A and Rodwell, V. W. 2000. Biosynthesis of fatty acids. In Harper's Biochemistry 25ed. Prentice-Hall, NJ 230-237
  17. Randle, P. J., Hales, C. N., Garland, P. B. and Newsholme, E. A. 1963. The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785-789
  18. Randle, P. J., Newsholme, E. A. and Garland, P. B. 1964. Regulation of glucose uptake by muscle: 8. effects of fatty acids, ketone bodies and pyruvate and of alloxandiabete and starvation on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem. J. 93:652-665 https://doi.org/10.1042/bj0930652
  19. Smith, S. and Prior, R. 1981. Evidence for a functional ATP-citrate lyase.NADP-malate dehydrogenase pathway in bovine adipose tissue: enzyme and metabolite levels. Arch Biochem. Biophys. 211: 192-201 https://doi.org/10.1016/0003-9861(81)90444-6
  20. Smith, S. B., Prior, R. L., Ferrell, C. L. and Mersmann, H. J. 1984. Interrelationships among diet, age, fat deposition and lipid metabolism In growing steers. J. Nutr. 114: 153-162 https://doi.org/10.1093/jn/114.1.153
  21. Stannard, S. R. and Johnson, N. A. 2003. Insulin resistance and elevated triglyceride in muscle: more important for survival than thrifty genes ? J. Physiol. 554:595-607 https://doi.org/10.1113/jphysiol.2003.053926
  22. SuI. H. S. and Dong, W. 1998. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr. 18:331-351 https://doi.org/10.1146/annurev.nutr.18.1.331
  23. Taniguchi, M., Utsugi, T., Oyama, K., Mannen, H., Kobayashi, M., Tanabe, Y., Ogino, A. and Tsuji, S. 2004. Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in japanese black cattle. Marnm. Genome 14:142-148
  24. USDA. 1989. Official united states standards for grades of beef carcases. Agric. Marketing Serv. USDA, Washington, DC
  25. Wang, Y. H., Byme, K A., Reverter, A., Harper, G. S., Taniguchi, M., McWilliarn, S. M., Mannen, H., Oyama, K and Lehnert, S. A. 2005. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Marnm. Genome 16: 201-210 https://doi.org/10.1007/s00335-004-2419-8
  26. Yoshimura, T. and Namikawa, K. 1983. Influence of breed, sex and anatomical location on lipid and fatty acid composition of bovine subcutaneous fat. Jpn. J. Zootech. Sci. 54:97-100
  27. Zorzano, A., Palacin, M. and Guma, A. 2005. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta. Physiol. Scand. 183:43-58 https://doi.org/10.1111/j.1365-201X.2004.01380.x
  28. 김경훈, 이주환, 오영균, 강수원, 이상철, 박웅렬, 고영두. 2005. 거세한우에 있어서 배합사료의 적정 TDN 수준과 도축 월령. 한국동물자원학회지. 47(5) 731-744
  29. 이한주, 이승환, 조용민, 윤호백, 전봉균, 오성종, 권무식, 윤두학. 2004. 한우 Lipoprotein lipase 유전자 intron 5번의 polymorphism과 경제 형질과의 관련성 분석. 한국동물자원과학회지. 46(6) 947-956