Abstract
This research was conducted to clarify the characteristics of electrochemical decolorization of effluent discharged from a biological animal wastewater treatment process and to finally establish parameters or mode for optimum operation of electrolysis system. Average color unit of wastewater was about 1,200 and DSA(Dimensionally Stable Anode) was used as electrode. Experiments were performed with two different operation conditions or modes, fixed voltage-free current(Run A) and free voltage-fixed current(Run B). Color removal rate was proportional to the electrode area and electrical conductivity, and an equation subject to them at a condition of fixed voltage was derived as follows; Ct=C0ekt, k=[{0.0121×a(dm2)× c(mS/cm)}+0.0288], [where, C0: initial color, Ct: color unit after treatment for t, k: reaction coefficient, t: time(min.), a: electrode area, c: conductivity]. From the study on the effects of current density on color removal, it was revealed that the removal efficiency of color was function of the current density, showing direct proportion. However, when considered energy consumption rate, maintenance of low current density was an economical way. Based on the obtained results, it was concluded that supplementation of electrolyte is not necessary for the removal of color from the effluent of secondary treatment process and operation with the mode of free voltage-fixed current, rather than operation with fixed voltage-free current mode, would be an efficient way to increase the removal performance and capacity per consumed energy.