DOI QR코드

DOI QR Code

Issues and Solutions for the Numerical Analysis of High Mach Number Flow over a Blunt-Body

무딘 물체 주위 고마하수 유동해석의 문제점과 해결책

  • Published : 2006.06.30

Abstract

Numerical analysis of high Mach number flow over a blunt-body poses many difficulties and various numerical schemes have been suggested to overcome the problems. However, the new schemes were used in the limited fields of applications because of the lack of field experience compared to more than 20 years old numerical schemes and the intricacies of modifying the existing code for the special application. In this study, some tips to overcome the numerical difficulties in solving the 3D high-Mach number flows by using Roe's scheme, the most widely used for the past 25 years and adopted in many commercial codes, were examined without a correction of the algorithm or a modification of the CFD code. The well-known carbuncle phenomena of Riemann solvers could be remedied even for an extremely high Mach number by applying the entropy fixing function and a unphysical solution could be overcome by applying a simply modified initial condition regardless of the entropy fixing and grid configuration.

무딘 물체 주위의 고마하수 유동의 수치해석은 여러 문제점을 지니고 있으며, 이러한 문제점을 해결하기 위한 다양한 해석 기법이 제시되어왔다. 그러나 20년 이상된 수치 기법과 비교할 때 현장 경험의 부족, 그리고 특별한 응용을 위하여 기존의 코드를 수정하는 번거로움 등으로 인해 새로운 기법들은 한정된 응용 분야에서만 이용되고 있다. 본 연구에서는 지난 25년간 가장 널리 이용되고 있고 여러 상용코드에도 적용된 Roe의 FDS 수치해법을 이용하여 알고리듬이나 전산유체해석 코드의 수정 없이 3차원 고마하수 유동 해석의 문제점을 극복하는 방안을 살펴보았다. 매우 큰 마하수에서도 엔트로피 수정을 통하여 Riemann 해법들의 문제점으로 잘 알려진 carbuncle 현상이 해결 가능함을 보였으며, 비물리적 해의 문제도 초기조건의 간단한 수정으로 엔트로피 수정이나 격자 형상에 관계없이 해결할 수 있었다.

Keywords

References

  1. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 1/2, Wiley, New York, 1990
  2. Steger, J. L., and Warming, R. F., 'Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite - Difference Method', Journal of Computational Physics, Vol. 40, 1981, pp. 263-293 https://doi.org/10.1016/0021-9991(81)90210-2
  3. Van Leer, B., 'Flux - vector Splitting for the Euler Equation', Lecture Notes in physics, Vol. 170, 1982, pp. 507-512
  4. Roe, P. L., 'Approximate Riemann Solvers, Parameter Vectors and Difference Schemes', Journal of Computational Physics, Vol. 43, 1981, pp. 357-372 https://doi.org/10.1016/0021-9991(81)90128-5
  5. Gressier, J., Villedieu, P. and Moshetta, J.-M., 'Positivity of Flux Vector Splitting Schemes', Journal of Computational Physics, Vol. 155, 1999, pp.199-220 https://doi.org/10.1006/jcph.1999.6337
  6. Kim, S., Kim, C., Rho, O.-H. and Hong, S.-K., 'Cures for the Shock Instability: Development of a Shock-Stable Roe Scheme', Journal Computational Physics, Vol. 185, 2003, pp. 342-374 https://doi.org/10.1016/S0021-9991(02)00037-2
  7. Sun, M. and Takayama, K., 'An Artificially Upstream Flux Vector Splitting Scheme for the Euler Equations', Journal Computational Physics, Vol. 189, 2003, pp. 305-329 https://doi.org/10.1016/S0021-9991(03)00212-2
  8. Xu, K., Martinelli, L. and Jameson, A., 'Gas-Kinetic Finite Volume Methods, Flux-Vector Splitting and Artificial Diffusion', Journal Computational Physics, Vol. 110, 1995, pp. 48-65
  9. Chang, S.-C., 'The Method of Space-Time Conservation Element and Solution Element-A New Approach for Solving the Navier-Stokes and Euler Equations', Journal Computational Physics, Vol. 119, 1995, pp. 295-324 https://doi.org/10.1006/jcph.1995.1137
  10. Frisch, U., Hasslacher, B., Pomeau, Y., 'Lattice-gas automata for the Navier - Stokes equation', Physics Review Letters, Vol. 56, 1986, pp. 1505-1508 https://doi.org/10.1103/PhysRevLett.56.1505
  11. Harten, A., Engquist, B., Osher, B., Chakravarthy, S. R., 'Uniformly High-Order Accurate Essentially Non-Oscillatory Schemes, III', Journal Computational Physics, Vol. 131, 1997, pp. 3-47 https://doi.org/10.1006/jcph.1996.5632
  12. Jiang, G. S., Shu, C. W., 'Efficient implementation of weighted ENO schemes', Journal Computational Physics, Vol. 126, 1996, pp. 202-228 https://doi.org/10.1006/jcph.1996.0130
  13. Choi, Y.-H., Merkle, C. L., 'The Application of Preconditioning in Viscous Flows', Journal of Computational Physics, Vol 105, 1993, pp. 207-223 https://doi.org/10.1006/jcph.1993.1069
  14. http://www.fluent.com
  15. http://www.cfdrc.com
  16. Montagne, J. L., Yee, H. C., Klopfer, G. H. and Vinokur, M., 'Hypersonic Blunt Body Computation Including Real Gas Effects', NASA TM 10074, Mar. 1998
  17. Choi, J.-Y., Jeung, I.-S. and Yoon, Y., 'Computational Fluid Dynamics Algorithms for Unsteady Shock - Induced Combustion, Part 1: Validation', AIAA J., Vol 38, No. 7, 2000, pp. 1179-1187 https://doi.org/10.2514/2.1112
  18. Wesseling, P., Principles of Computational Fluid Dynamics, Springer-Verlag, 2000
  19. Blazek, J., Computational Fluid Dynamics: Principles and Applications, Elsevier, 2001
  20. Chung, T, J., Computational Fluid Dynamics, Cambridge University Press, 2002
  21. Palmer, G., 'An Implicit Flux-Split Algorithm to Calculate Hypersonic Flowfields in Chemical Equilibrium', AIAA paper 87-1580, 1987
  22. Palmer, G., 'An Improved Flux-Split Algorithm Applied to Hypersonic Flows in Chemical Equilibrium', AIAA paper 88-2693, 1988
  23. http://www.grc.nasa.gov/WWW/CEAWeb/