DOI QR코드

DOI QR Code

모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES)

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor

  • 발행 : 2006.07.31

초록

본 논문에서는 대와동모사를 이용하여 모형 가스터빈 연소기에서 난류 예혼합연소의 선회 유동구조와 화염특성이 검토되었다. 비정상 화염 거동을 모사하기 위하여 G-방정식 화염편 모델이 적용되었다. 결과로서, 입구 선회수 증가에 따른 코너 및 중앙 재순환 유동이 뚜렷한 차이를 보이며, 화염의 길이도 점차 감소됨을 확인 할 수 있었다. 또한 강선회 조건에서 역화현상의 원인이 확인되었다. 정확한 비정상 화염거동의 모사를 위하여, 연소실 내 음향파 거동의 예측성능이 우선적으로 검토되었으며, 스텝 모서리 근처에서 생성된 와동이 화염면 변동에 가장 큰 영향을 주고 있음을 알 수 있었다. 마지막으로 비정상 화염-와동 상호작용에 대한 해석을 통해 선회와 음향파의 전개로부터 생성된 와동의 진동이 화염면 및 열발생의 변동과 밀접하게 관련되어짐을 체계적으로 규명하였다.

In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.

키워드

참고문헌

  1. Bahr, D., 'Aircraft turbine engine NOx emissions abatement', In Culick, F., Heitor, M. V. and Whitelaw, J. H. (Eds.) Unsteady Combustion, Kluwer Academic, 1995, pp. 234 - 264
  2. Lilley, D. G., 'Swirl flows in combustion: a review', AIAA Journal, Vol. 15, No.8, 1977, pp. 1063 - 1078 https://doi.org/10.2514/3.60756
  3. Kulsheimer, C. and Buchner, H., 'Combustion dynamics of turbulent swirling flames', Combustion and Flame, Vol. 131, 2002, pp. 70-84 https://doi.org/10.1016/S0010-2180(02)00394-2
  4. Sivasegaram, S. and Whitelaw, J., 'The influence of swirl on oscillations in ducted premixed flames', Combust. Sci. and Tech., Vol. 138, 1991, pp. 195-205
  5. Anacleto, P. M., Fernandes, E. C. Heitor, M. V. and Shtork, S. I., 'Swirl flow structure and flame characteristics in a model lean premixed combustor', Combust. Sci. and Tech., Vol. 175, 2003, pp. 1369-1388 https://doi.org/10.1080/00102200302354
  6. Poinsot, T., Trouve, A., Veynante, D., Candal, S. and Esposito, E., 'Vortex driven acoustically coupled combustion instabilities', J. Fluid Mech., Vol. 177, 1987, pp. 265-292 https://doi.org/10.1017/S0022112087000958
  7. Poinsot, T. and Veynante, D., Theoretical numerical combustion, Edwards, 2001
  8. Meinke, M., Schroder, W., Krause, E. and Rister, Th., 'A comparison of second- and sixth -order methods for large-eddy simulations', Computers & Fluids, Vol. 31, 2002, pp. 695 - 718 https://doi.org/10.1016/S0045-7930(01)00073-1
  9. Menon, S., Yeung, P. K. and Kim, W. W., 'Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence', Computers and Fluids, Vol. 25, No.2, 1996, pp. 165-180 https://doi.org/10.1016/0045-7930(95)00036-4
  10. Kim, W. W. and Menon, S., 'A new dynamic one-equation subgrid-scale model for large-eddy simulation', AIAA-95-0356, 1995
  11. Menon, S. and Jou, W. H., 'Large-eddy simulations of combustion instability in an axisymmetric ramjet combustor', Combust. Sci. and Tech., Vol. 75, 1991, pp. 53-72 https://doi.org/10.1080/00102209108924078
  12. Lipatnikov, A. N. and Chomiak, J., 'Turbulent flame speed and thickness phenomenology, evaluation and application in multidimensional simulations', Progress in Energy and Combustion Science, Vol. 28, 2000, pp. 1 -74
  13. Kee, R. J., Grear, J. F., Smooke, M. D. and Miller, J. A., 'A fortran program for modeling steady laminar one-dimensional premixed flames', SAND85-8240, 1994
  14. MacCormack, 'The effects of viscosity in hyper-velocity impact cratering', AIAA Paper 69-354, 1969
  15. Hwang, C. H. and Lee, C. E., 'Performance evaluation of large eddy simulation for recirculating and swirling flows', Transactions of KSME B, Vol. 30, No.4, 2006, in press
  16. Broda, J. C; Seo, S., Santoro, R. J., Shirhattikar, G. and Yang, V., 'An experimental study of combustion dynamics of a premixed swirl injector', Proceedings of the Combustion Institute, Vol. 27, 1998, pp. 1849 - 1856
  17. Gupta, A. K., Lilley, D. G. and Syred, N., Swirl Flows, ABACUS PRESS, 1984
  18. Huang, V., Sung, H. G., Heish, S. Y. and Yang, V., 'Large-eddy simulation of combustion dynamics of lean-premixed swirlstabilized combustor', Journal of Propulsion and Power, Vol. 19, No.5, 2003, pp. 782-794 https://doi.org/10.2514/2.6194
  19. Poinsot, T. J. and Lele, S. K., 'Boundary conditions for direct simulations of compressible viscous flows', J. Computational Physics, Vol. 101, 1992, pp. 104-129 https://doi.org/10.1016/0021-9991(92)90046-2
  20. Huang, Y. and Yang, V., 'Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor', Proceedings of the Combustion Institute, Vol. 30, 2005, pp. 1775 - 1782
  21. Seo, S., 'Parametric study of lean premixed combustion instability in a pressurized model gas turbine combustor', Ph. D. Thesis, The Pennsylvania State University, 1999
  22. Rayleigh, J. W. S., The Theory of Sound, Vol. II, Dover Publications, New York, 1945

피인용 문헌

  1. A Study on the Flame Shape and the Interaction between Pilot and Main Flames in a Dual Swirl Combustor vol.18, pp.4, 2014, https://doi.org/10.6108/KSPE.2014.18.4.033
  2. Development of Hybrid/Dual Jet Combustor for a MGT (Part I: Experimental Study on Geometric Optimization) vol.17, pp.5, 2013, https://doi.org/10.6108/KSPE.2013.17.5.060