DOI QR코드

DOI QR Code

비평면 지면효과를 받는 날개들의 종방향 정안정성

Longitudinal Static Stability of Wings Flying Over Nonplanar Ground Surfaces

  • 발행 : 2006.07.31

초록

채널 및 레일과 같은 비평면 지면 위를 비행하는 날개들의 정상상태 공력특성 및 종방향 정안정성을 경계요소법을 사용하여 연구하였다. 펜스의 높이가 날개의 위치보다 높을 경우, 펜스와 날개와의 거리가 작아질수록 양력이 증가하고 피칭다운 모멘트가 커졌다. 레일의 폭이 날개 스팬보다 넓을 때, 레일의 높이가 낮을수록 양력이 증가하고 유도항력이 감소하였다. 종방향 정안정성 측면에서 단일 날개의 경우 비평면 지면보다 평지에서 안정한 결과를 나타내었다. 종렬배치형 날개의 경우 채널내를 비행하는 날개가 평지보다 비평면 지면에서 안정적이었다. 본 연구결과는 초고속운송체의 설계에 적용될 수 있을 것으로 기대한다.

Longitudinal static stability and steady aerodynamic characteristics of wings flying over nonplanar ground surfaces (rail and channel) are investigated using the boundary-element method. For a channel with it's fence higher than the wing height, the lift and the nose-down pitching moment increase as the gap between the wingtip and the fence decreases. For a rail with it's width wider than the wing span, the lift and the nose-down pitching moment increase as the rail height decreases. Longitudinal static stability of a single wing flying over nonplanar surfaces is worse than the case of the flat ground. In case of tandem wings, longitudinal static stability of the wings flying over the channel is better than the case of the flat ground. It is believed that the present results can be applied to the conceptual design of high-speed ground transporters.

키워드

참고문헌

  1. 전호환, 장종희, 백광준, '해면효과익선의 종방향 안정성에 대한 연구', 대한조선학회지, 제 36권, 제 3호, 1999, pp. 60-70
  2. 김상근, 서성부, 이동환, 김기은, 'WIG선의 날개에 대한 풍동실험 고찰', 대한조선학회지, 제 34권, 제 1호, 1997, pp. 60-67
  3. 조장렬, 김양준, '지면효과익기 날개에 대한 전산 공력 해석', 한국항공우주학회지, 제 32권, 제 8호, 2004, pp. 37-46
  4. 임예훈, 장근식, '지면효과를 받는 3차원 날개의 유동 해석', 한국항공우주학회지, 제 29권I 제 5호, 2001,pp. 37-46
  5. 조정현, 김윤제, '지면 효과를 받는 2차원 에어포일 주위 유동에 대한 연구', 한국항공우주학회지, 제 29권, 제 5호, 2001, pp. 17-24
  6. Mithra, M. K. V., 'The Tracked Wing in Ground-Effect (TWIG)', Ph.D. Dissertation, Dept. of Mechanical and Aerospace Engineering, Princeton University, 1983, pp. 2-47
  7. Cho, J. and Han, C. 'A Numerical Method for the Aerodynamic Design of an Aero-Levitation Electric Vehicle', Workshop on Drag Reduction of Aircraft and Ground Transportation, Inst. of Fluid Science, Tohoku University, Send ai, Japan, 2000, pp. 16-17
  8. Han, C, Cho, L Moon, Y., Yoon, Y., and Song, Y., 'Design of an Aero-levitation Electric Vehicle for High-Speed Ground Transportation System', Journal of Aircraft, Vol. 42, No.1, 2005, pp. 93-104 https://doi.org/10.2514/1.95
  9. Han, C. 'Aerodynamic Analysis and Design of an Aero-levitation Vehicle for a High-speed Ground Transportation System', Ph.D. Dissertation, Dept. of Mechanical Engineering, Hanyang Univer- sity, 2002, pp. 107-135
  10. Davis, J. E. and Harris, G. L, 'Nonplanar Wings in Nonplanar Ground Effect,' Journal of Aircraft, Vol. 10, No.5, 1973, pp. 308-311 https://doi.org/10.2514/3.44368
  11. Kono, T., Kohama, Y, and Matsui, N., 'Stability of Guide Way Type Wing in Ground Effect Vehicle', The 3rd JSME-KSME Fluids Engineering Conference, Sendai, Japan, 1994
  12. Kikuchi, K., 'Numerical Simulation of the ground Effect using the Boundary Element Method,' International Journal for Numerical Methods In Fluids, Vol. 25, 1997, pp. 1043-1056 https://doi.org/10.1002/(SICI)1097-0363(19971115)25:9<1043::AID-FLD604>3.0.CO;2-Z
  13. Irodov, R. D., 'Criteria of Longitudinal Stability of Ekranoplan', Ucheniye Zapiski TSAGI, Vol.1, No.4, Moscow, 1970
  14. Staufenbiel, R. W., 'On the Design of Stable Ram Wing Vehicles', The Royal Aeronautical Society Symposium Proc., May. 1987
  15. Delhaye, H., 'An Investigation into the Longitudinal Stability of Wing In Ground Effect Vehicles', MSc Thesis, Dept. of Flight Dynamics, Cranfield University, Sept. 1997, Chapter 1-4
  16. Hess, J. L. and Smith, A. M.O., 'Calculation of Potential Flow About Arbitrary Bodies', Progress in Aeronautical Sciences, Vol. 8, Pergamon Press, New York, 1966

피인용 문헌

  1. Aerodynamic Characteristics of WIG Effect Vehicle with Direct Underside Pressurization vol.38, pp.7, 2010, https://doi.org/10.5139/JKSAS.2010.38.7.655